Skip to main content
Log in

Neutron stars with isovector scalar correlations

  • Original Article
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

Neutron stars with the isovector scalar δ-field are studied in the framework of the relativistic mean-field (RMF) approach in a pure-nucleon-plus-lepton scheme. The δ-field leads to a larger repulsion in dense neutron-rich matter and to a definite splitting of proton and neutron effective masses. Both features are influencing the stability conditions of the neutron stars. Two parametrizations for the effective nonlinear Lagrangian density are used to calculate the nuclear equation of state (EOS) and the neutron star properties, and compared to correlated Dirac-Brueckner results. We conclude that in order to reproduce reasonable nuclear structure and neutron star properties within a RMF approach, a density dependence of the coupling constants is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kubis, M. Kutschera, Phys. Lett. B 399, 191 (1997).

    Article  Google Scholar 

  2. B. Liu, V. Greco, V. Baran, M. Colonna, M. Di Toro, Phys. Rev. C 65, 045201 (2002).

    Article  Google Scholar 

  3. V. Greco, M. Colonna, M. Di Toro, F. Matera, Phys. Rev. C 67, 015203 (2003).

    Article  Google Scholar 

  4. V. Greco, Phys. Lett. B 562, 215 (2003).

    Article  Google Scholar 

  5. T. Gaitanos, Nucl. Phys. A 732, 24 (2004).

    Article  Google Scholar 

  6. T. Gaitanos, M. Colonna, M. Di Toro, H.H. Wolter, Phys. Lett. B 595 , 209 (2004).

    Article  Google Scholar 

  7. J.M. Lattimer, M. Prakash, Science 304, 536 (2004).

    Google Scholar 

  8. C. Maieron, M. Baldo, G.F. Burgio, H.J. Schultze, Phys. Rev. D 70, 043010 (2004).

    Article  Google Scholar 

  9. R.C. Tolman, Phys. Rev. 55, 364 (1939)

    Article  Google Scholar 

  10. J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939).

    Article  Google Scholar 

  11. G.A. Lalazissis, J. König, P. Ring, Phys. Rev. C 55, 540 (1997).

    Article  Google Scholar 

  12. R. Brockmann, R. Machleidt, Phys. Rev. C 42, 1965 (1990).

    Article  Google Scholar 

  13. T. Gross-Boelting, C. Fuchs, A. Faessler, Nucl. Phys. A 648, 105 (1999).

    Article  Google Scholar 

  14. B. ter Haar, R. Malfliet, Phys. Rep. 149, 207 (1987).

    Article  Google Scholar 

  15. T. Gaitanos, C. Fuchs, H.H. Wolter, A. Faessler, Eur. Phys. J. A 12, 421 (2001).

    Article  Google Scholar 

  16. A.B. Santra, U. Lombardo, Phys. Rev. C 62, 018202 (2001).

    Article  Google Scholar 

  17. F. de Jong, H. Lenske, Phys. Rev. C 57, 3099 (1998).

    Article  Google Scholar 

  18. P. Danielewicz, Nucl. Phys. A 673, 375 (2000).

    Article  Google Scholar 

  19. P. Danielewicz, R. Lacey, W.G. Lynch, Science 298, 1592 (2002).

    Google Scholar 

  20. A.M.S. Santos, D.P. Menezes, Phys. Rev. C 69, 045803 (2004).

    Article  Google Scholar 

  21. S. Typel, H.H. Wolter, Nucl. Phys. A 656, 331 (1999).

    Article  Google Scholar 

  22. D.P. Menezes, C. Providencia, Phys. Rev. C 70, 058801 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Di Toro.

Additional information

A. Molinari

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, B., Guo, H., Di Toro, M. et al. Neutron stars with isovector scalar correlations. Eur. Phys. J. A 25, 293–298 (2005). https://doi.org/10.1140/epja/i2005-10095-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2005-10095-1

PACS.

Navigation