Skip to main content
Log in

Double-pion photoproduction on nucleon and deuteron

  • Original Article
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

Photoproduction of two pions on nucleon and deuteron is studied for photon energies from threshold up to Eγ = 1.5 GeV. For the elementary operator an effective Lagrangian approach is used with resonance and Born contributions. The model parameters are fixed by resonance decay widths and multipole analyses of single-pion photoproduction. A satisfactory description of total cross sections of two-pion production on the proton for various charge channels is achieved, except for π0π0 production for which a significant underestimation is found near threshold. The operator then serves for the evaluation of this reaction on the deuteron in the impulse approximation. In addition, NN rescattering in the final state is taken into account, but πN and ππ rescatterings are neglected. Results are presented for total cross sections and target asymmetries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Capstick, W. Roberts, Phys. Rev. D 49, 4570 (1994).

    Article  Google Scholar 

  2. J.A. Gomez Tejedor, E. Oset, Nucl. Phys. A 600, 413 (1996).

    Article  Google Scholar 

  3. L.Y. Murphy, J.M. Laget, DAPHNIA/SPhN 96-10 (1996).

  4. K. Ochi, M. Hirata, T. Takaki, Phys. Rev. C 56, 1472 (1997).

    Article  Google Scholar 

  5. M. Ripani, Nucl. Phys. A 672, 220 (2000).

    Article  Google Scholar 

  6. V. Bernard, N. Kaiser, U.-G. Meissner, Phys. Lett. B 382, 19 (1996), arXiv:nucl-th/9604010

    Article  Google Scholar 

  7. D. Lüke, P. Söding, Springer Tracts Mod. Phys. 59, 39 (1971).

    Google Scholar 

  8. A. Zabrodin, Phys. Rev. C 55, R1617 (1997).

  9. V. Kleber, Eur. Phys. J. A 9, 1 (2000).

    Article  Google Scholar 

  10. J.D. Bjorken, S.D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, 1964).

  11. S. Ong, J. Wiele, Phys. Rev. C 63, 024614 (2001).

    Article  Google Scholar 

  12. Particle Data Group, Eur. Phys. J. C 15, 1 (2000).

    Google Scholar 

  13. D. Drechsel, S.S. Kamalov, L. Tiator, Nucl. Phys. A 645, 145 (1999).

    Article  Google Scholar 

  14. D.M. Manley, E.M. Saleski, Phys. Rev. D 45, 4002 (1992).

    Article  Google Scholar 

  15. K. Gottfried, J.D. Jackson, Nuovo Cimento 33, 309 (1964).

    Google Scholar 

  16. M.P. Locher, W. Sandhas, Z. Phys. 195, 461 (1966).

    Article  Google Scholar 

  17. A. Dar, Phys. Rev. Lett, 13, 91 (1964).

    Google Scholar 

  18. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, 1972).

  19. M.G. Hauser, Phys. Rev. 160, 1215 (1967).

    Article  Google Scholar 

  20. M. Hirata, N. Katagiri, T. Takaki, Phys. Rev. C 67, 034601 (2003).

    Article  Google Scholar 

  21. Aachen-Berlin-Bonn-Hamburg-Heidelberg-München Collaboration, Phys. Rev. 175, 1669 (1968).

    Article  Google Scholar 

  22. A. Braghieri, Phys. Lett. B 363, 46 (1995).

    Article  Google Scholar 

  23. W. Langgärtner, Phys. Rev. Lett. 87, 052001 (2001).

    Article  PubMed  Google Scholar 

  24. M. Wolf, Eur. Phys. J. A 9, 5 (2000).

    Article  Google Scholar 

  25. Y. Assafiri, Phys. Rev. Lett. 90, 222001 (2003).

    Article  PubMed  Google Scholar 

  26. J.C. Nacher, E. Oset, M.J. Vicente Vacas, L. Roca, Nucl. Phys. A 695, 295 (2001).

    Article  Google Scholar 

  27. H.G. Hilpert, Nucl. Phys. B 21, 93 (1970).

    Google Scholar 

  28. Y. Oh, T.-S.H. Lee, Phys. Rev. C 69, 025201 (2004).

    Google Scholar 

  29. L. Roca, E. Oset, M.J. Vicente Vacas, Phys. Lett. B 541, 77 (2002).

    Article  Google Scholar 

  30. M. Kotulla, Phys. Lett. B 578, 63 (2004).

    Google Scholar 

  31. F. Carbonara, Nuovo Cimento A 36, 219 (1976).

    Google Scholar 

  32. H. Arenhövel, A. Fix, M. Schwamb, Phys. Rev. Lett. 93, 202301 (2004).

    PubMed  Google Scholar 

  33. H.J. Arends, A2 Collaboration, private communication.

  34. J.M. Laget, Phys. Rep. 69, 1 (1981).

    Google Scholar 

  35. M.I. Levchuk, V.A. Petrunkin, M. Schumacher, Z. Phys. A 355, 317 (1996).

    Google Scholar 

  36. E.M. Darwish, H. Arenhövel, M. Schwamb, Eur. Phys. J. A 16, 111 (2003).

    Google Scholar 

  37. J. Haidenbauer, W. Plessas, Phys. Rev. C 30, 1822 (1984).

    Google Scholar 

  38. R. Schiffer, Nucl. Phys. B 38, 628 (1972).

    Google Scholar 

  39. B. Krusche, M. Fuchs, V. Metag, Eur. Phys. J. A 6, 309 (1999).

    Google Scholar 

  40. V.M. Kolybasov, V.G. Ksenzov, Yad. Fiz. 22, 720 (1975), (Sov. J. Nucl. Phys. 22, 372 (1976))

    Google Scholar 

  41. M. Asai, Z. Phys. A 344, 335 (1995).

    Google Scholar 

  42. J.A. Gomez Tejedor, E. Oset, H. Toki, Phys. Lett. B 346, 240 (1995).

    Google Scholar 

  43. S. Strauch, Fizika B 13, 179 (2004), nucl-ex/0407008.

    Google Scholar 

  44. G.F. Chew, M.L. Goldberger, F.E. Low, Y. Nambu, Phys. Rev. 106, 1345 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

U.-G. Meißner

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fix, A., Arenhövel, H. Double-pion photoproduction on nucleon and deuteron. Eur. Phys. J. A 25, 115–135 (2005). https://doi.org/10.1140/epja/i2005-10067-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2005-10067-5

PACS.

Navigation