Skip to main content
Log in

Low-lying magnetic dipole strength distribution in the γ-soft even-even 130-136Ba

  • Nuclear Structure and Reactions
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

In this study the scissors mode 1+ states are systematically investigated within the rotational invariant Quasiparticle Random Phase Approximation (QRPA) for 130-136Ba isotopes. We consider the 1+ vibrations generated by the isovector spin-spin interactions and the isoscalar and isovector quadrupole-type separable forces restoring the broken symmetry by a deformed mean field according to A.A. Kuliev et al. (Int. J. Mod. Phys. E 9, 249 (2000)). It has been shown that the restoration of the broken rotational symmetry of the Hamiltonian essentially decreases the B(M1) value of the low-lying 1+ states and increases the collectivization of the scissors mode excitations in the spectroscopic energy region. The agreement between the calculated mean excitation energies as well as the summed B(M1) value of the scissors mode excitations and the available experimental data of 134Ba and 136Ba is rather good. A destructive interference between the orbit and spin part of the M1 strength has been found for barium isotopes near the shell closer. For all the nuclei under investigation, the low-lying M1 transitions have ΔK = 1 character as it is the case for the well-deformed nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Richter, Prog. Part. Nucl. Phys. 34, 261 (1995).

    Article  Google Scholar 

  2. N. Lo Iudice, F. Palumbo, Phys. Rev. Lett. 41, 1532 (1978).

    Article  ADS  Google Scholar 

  3. F. Iachello, Nucl. Phys. A 358, 89c (1981).

    Article  ADS  MathSciNet  Google Scholar 

  4. D. Bohle, Phys. Lett. B 137, 27 (1984).

    Article  ADS  Google Scholar 

  5. U. Kneissl, Prog. Part. Nucl. Phys. 37, 349 (1996).

    Article  Google Scholar 

  6. W. Ziegler, Phys. Rev. Lett. 65, 2515 (1990).

    Article  ADS  Google Scholar 

  7. J. Margraf, Phys. Rev. C 47, 1474 (1993).

    Article  ADS  Google Scholar 

  8. P. von Neumann-Cosel, Phys. Rev. Lett. 75, 4178 (1995).

    Article  ADS  Google Scholar 

  9. A. Zilges, Nucl. Phys. A 599, 147c (1996)

    Article  ADS  Google Scholar 

  10. T. Suzuki, D. Rowe, Nucl. Phys. A 289, 461 (1977).

    Article  ADS  Google Scholar 

  11. E. Lipparini, S. Stringari, Phys. Lett. B 130, 139 (1983).

    Article  ADS  Google Scholar 

  12. D. Bes, R. Broglia, Phys. Lett. B 137, 141 (1984).

    Article  ADS  Google Scholar 

  13. R. Hilton, Z. Phys. A 316, 121 (1984).

    Article  Google Scholar 

  14. A. Nojarov, Nucl. Phys. A 563, 349 (1994)

    Article  ADS  Google Scholar 

  15. E. Moya De Guerra, L. Zamick, Phys. Rev. C 47 2604 (1993)

  16. J. Speth, D. Zawischa, Phys. Lett. B 211, 247 (1988).

    Article  ADS  Google Scholar 

  17. A.A. Raduta, N. Lo Iudice, I.I. Irsu, Nucl. Phys. A 584, 84 (1995).

    Article  ADS  Google Scholar 

  18. V.G. Soloviev, Nucl. Phys. A 600, 155 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  19. N. Lo Iudice, A. Richter, Phys. Lett. B 304, 193 (1993).

    Article  ADS  Google Scholar 

  20. N. Lo Iudice, A. Raduta, D. Delion, Phys. Rev. C 50, 127 (1994).

    Article  ADS  Google Scholar 

  21. J. Enders, Phys. Rev. C 59, R1851 (1999).

  22. J. Enders, Phys. Rev. C 71, 014306 (2005).

    Article  ADS  Google Scholar 

  23. I. Hamamoto, C. Magnusson, Phys. Lett. 260, 6 (1991).

    Article  Google Scholar 

  24. K. Heyde, C. De Coster, Phys. Rev. C 44, R2262 (1991).

  25. E. Garrido, Phys. Rev. C 44, R2150 (1991).

  26. P. Sarriguren, J. Phys. G 20, 315 (1994)

    Article  ADS  Google Scholar 

  27. A.A. Kuliev, Int. J. Mod. Phys. E 9, 249 (2000).

    Article  ADS  Google Scholar 

  28. A.A. Kuliev, J. Phys. G 28, 407 (2002).

    Article  ADS  Google Scholar 

  29. D. Zawischa, J. Phys. G 24, 683 (1998).

    Article  ADS  Google Scholar 

  30. N. Lo Iudice, Riv. Nuovo Cimento 23, 1 (2000).

    Google Scholar 

  31. P. von Brentano, Phys. Rev. Lett. 76, 2029 (1996).

    Article  ADS  Google Scholar 

  32. A. Linnemann, Phys. Lett. B 554, 15 (2003).

    Article  ADS  Google Scholar 

  33. H. Maser, Phys. Rev. C 54, R2129 (1996).

  34. N. Pietralla, Phys. Rev. C 58, 796 (1998).

    Article  ADS  Google Scholar 

  35. C. Fransen, Phys. Rev. C 59, 2264 (1999).

    Article  ADS  Google Scholar 

  36. R. Georgii, Phys. Lett. B 351, 82 (1995).

    Article  ADS  Google Scholar 

  37. R. Schwengner, Nucl. Phys. A 620, 277 (1997).

    Article  ADS  Google Scholar 

  38. N. Pietralla, Phys. Rev. Lett. 83, 1303 (1999).

    Article  ADS  Google Scholar 

  39. N. Pietralla, Phys. Rev. C 58, 191 (1998).

    Article  ADS  Google Scholar 

  40. S. Raman, At. Data Nucl. Data Tables 36, 1 (1987)

    Article  ADS  Google Scholar 

  41. P. Petkov, Phys. Rev. C 51, 2511 (1995).

    Article  ADS  Google Scholar 

  42. M. Scheck, Phys. Rev. C 70, 044319 (2004).

    Article  ADS  Google Scholar 

  43. H. Harter, Phys. Lett. B 205, 174 (1988).

    Article  ADS  Google Scholar 

  44. E. Hammaren, Phys. Lett. B 171, 347 (1986).

    Article  ADS  Google Scholar 

  45. A. Nowoselsky, I. Talmi, Phys. Lett. B 172, 139 (1986).

    Article  ADS  Google Scholar 

  46. G. Puddi, O. Scholten, T. Otsuka, Nucl. Phys. A 348, 109 (1988).

    Article  ADS  Google Scholar 

  47. E. Guliyev, Bulg. J. Phys. 27, 17 (2000).

    Google Scholar 

  48. E. Guliyev, Nucl. Phys. A 690, 255c (2001).

    Article  ADS  Google Scholar 

  49. V.Yu Ponomarev, Phys. Lett. B 97, 4 (1980).

    Article  ADS  Google Scholar 

  50. E. Guliyev, Phys. Lett. B 532, 173 (2002).

    Article  ADS  Google Scholar 

  51. N. Pyatov, M. Cherney, Sov. J. Nucl. Phys. 16, 931 (1972).

    Google Scholar 

  52. N. Pyatov, D. Salamov, Nucleonica 22, 127 (1977).

    Google Scholar 

  53. K.G. Dietrich, Phys. Lett. B 220, 351 (1985).

    Article  ADS  Google Scholar 

  54. N. Lo Iudice, Nucl. Phys. A 605, 61 (1996).

    Article  ADS  Google Scholar 

  55. P. Magierski, R. Wyss, Phys. Lett. 486, 54 (2000).

    Article  Google Scholar 

  56. A.A. Kuliev, N. Pyatov, Sov. J. Nucl. Phys. 20, 297 (1974).

    Google Scholar 

  57. I. Hamamoto, W. Nazarewicz, Phys. Lett. B 297, 25 (1992).

    Article  ADS  Google Scholar 

  58. O. Bohr, B. Mottelson, Nuclear Structure, Vol. 1 (Benjamin, New York Amsterdam, 1969).

  59. O. Prior, Nucl. Phys. A 110, 257 (1968).

    Article  ADS  Google Scholar 

  60. J. Dudek, T. Werner, J. Phys. G 4, 1543 (1978).

    Article  ADS  Google Scholar 

  61. O. Bohr, B. Mottelson, Nuclear Structure, Vol. 2 (Benjamin, New York Amsterdam, 1975).

  62. V.G. Soloviev, Theory of Complex Nuclei (Pergamon Press, New York, 1976).

  63. S. Gabrakov, Nucl. Phys. A 182, 625 (1972).

    Article  ADS  Google Scholar 

  64. A.A. Kuliev, J. Phys. G 30, 1253 (2004).

    Article  ADS  Google Scholar 

  65. R.C. Greenwood, Phys. Rev. C 14, 1906 (1976).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Guliyev.

Additional information

G. Orlandini

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guliyev, E., Ertuğral, F. & Kuliev, A.A. Low-lying magnetic dipole strength distribution in the γ-soft even-even 130-136Ba. Eur. Phys. J. A 27, 313–320 (2006). https://doi.org/10.1140/epja/i2004-10309-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2004-10309-0

PACS.

Navigation