Skip to main content

Advertisement

Log in

Relativistic mean-field study for Zn isotopes

  • Original Article
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

The ground-state properties of Zn isotopes have been investigated using the deformed relativistic mean-field (RMF) theory with the NL-SH and TM1 forces. The π-meson and the spatial component of the ω-meson are taken into account. Shell effects in nuclear sizes and neutron skins are well described. Strong deformations are found for most of Zn isotopes. The shape coexistence of prolate-oblate types exists for a high portion of Zn isotopes. The occurrence of the superdeformed minimum in even isotopes is discussed. The π-meson contribution in ground-state properties of odd Zn isotopes is very limited, whereas the spatial component of the ω-meson that couples to the nonzero vector current in deformed odd nuclei gives rise to the degeneracy breaking of the level with opposite spin projections, playing the role of anti-pairing. The anti-pairing role in odd nuclei and pairing correlations with the Bardeen-Cooper-Schrieffer description in even nuclei are important to give the odd-even difference in charge radii, the prediction of the proton drip line, and possible abundance of the halo structure for neutron-rich isotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.D. Walecka, Ann. Phys. (N.Y.) 83, 491 (1974).

    Article  Google Scholar 

  2. S.A. Chin, J.D. Walecka, Phys. Lett. B 52, 24 (1974).

    Article  Google Scholar 

  3. J. Boguta, A.R. Bodmer, Nucl. Phys. A 292, 413 (1977).

    Article  Google Scholar 

  4. L.N. Savushkin, Sov. J. Nucl. Phys. 30, 340 (1979).

    Google Scholar 

  5. C.J. Horowitz, B.D. Serot, Phys. Lett. B 109, 341 (1982)

    Article  Google Scholar 

  6. B. Banerjee, N.L. Glendenning, M. Guylassy, Nucl. Phys. A 361, 326 (1981)

    Article  Google Scholar 

  7. A. Bouyssy, S. Marcos, P.V. Thieu, Nucl. Phys. A 422, 541 (1984).

    Article  Google Scholar 

  8. J.K. Zhang, X.J. Qiu, Phys. Lett. B 152, 153 (1985)

    Article  Google Scholar 

  9. P.G. Rheinhard, M. Rufa, J. Maruhn, W. Freiner, J. Friedrich, Z. Phys. A 323, 13 (1986).

    Google Scholar 

  10. Y.K. Gambhir, P. Ring, A. Thimet, Ann. Phys. (N.Y.) 198, 132 (1990).

    Article  Google Scholar 

  11. B.D. Serot, Rep. Prog. Phys. 55, 1855 (1992).

    Article  Google Scholar 

  12. M.M. Sharma, M.A. Nagarajan, P. Ring, Phys. Lett. B 312, 377 (1993).

    Article  Google Scholar 

  13. Y. Sugahara, H. Toki, Nucl. Phys. A 579, 557 (1994).

    Article  Google Scholar 

  14. B.D. Serot, J.D. Walecka, Int. J. Mod. Phys. E 6, 515 (1997).

    Article  Google Scholar 

  15. M.M. Sharma, G.A. Lalazissis, P. Ring, Phys. Lett. B 317, 9 (1993).

    Article  Google Scholar 

  16. G.A. Lalazissis, M.M. Sharma Nucl. Phys. A 586, 201 (1995).

    Article  Google Scholar 

  17. G.A. Lalazissis, A.R. Farhan, M.M. Sharma, Nucl. Phys. A 628, 221 (1998).

    Article  Google Scholar 

  18. G.A. Lalazissis, M.M. Sharma, P. Ring, Nucl. Phys. A 597, 35 (1996).

    Article  Google Scholar 

  19. Z.Z. Ren, Z.Y. Zhu, Y.H. Cai, G.O. Xu, Nucl. Phys. A 605, 75 (1996).

    Article  Google Scholar 

  20. M.M. Sharma, S. Mythili, A.R. Farhan, Phys. Rev. C 59, 1379 (1999).

    Article  Google Scholar 

  21. J.Q. Li, Z.Y. Ma, B.Q. Chen, Y. Zhou, Phys. Rev. C 65, 064305 (2002).

    Article  Google Scholar 

  22. C.E. Svensson, C. Baktash, J.A. Cameronet, Phys. Rev. Lett. 79, 1233 (1997).

    Article  Google Scholar 

  23. C.E. Svensson, D. Rudolph, C. Baktash, Phys. Rev. Lett. 82, 3400 (1999).

    Google Scholar 

  24. M. Devlin, A.V. Afanasjev, R.M. Clark, Phys. Rev. Lett. 82, 5217 (1999).

    Google Scholar 

  25. C.H. Yu, C. Baktash, J. Dobaczewski, Phys. Rev. C 62, 041301(R) (2000).

    Google Scholar 

  26. Y. Sun, J.Y. Zhang, M. Guidry, C.L. Wu, Phys. Rev. Lett. 83, 686 (1999).

    Google Scholar 

  27. C.H. Yu, C. Baktash, J. Dobaczewski, Phys. Rev. C 60, 031305 (1999).

    Google Scholar 

  28. W.Z. Jiang, T.T. Wang, Z.Y. Zhu, Phys. Rev. C 68, 047301 (2003).

    Google Scholar 

  29. C.E. Price, G.E. Walker, Phys. Rev. C 36, 354 (1987)

    Google Scholar 

  30. J.K. Zhang, D.S. Onley, Phys. Lett. B 212, 145 (1988).

    Google Scholar 

  31. J.K. Zhang, D.S. Onley, Nucl. Phys. A 526, 245 (1991).

    Google Scholar 

  32. R.J. Furnstahl, C.E. Price, Phys. Rev. C 41, 1792 (1990).

    Google Scholar 

  33. L.S. Warrier, Y.K. Gambhir, Phys. Rev. C 49, 871 (1994).

    Google Scholar 

  34. P. Möller, J.R. Nix, Nucl. Phys. A 536, 20 (1992).

    Google Scholar 

  35. G. Audi, A.H. Wapstra, Nucl. Phys. A 565, 1 (1993).

    Google Scholar 

  36. M.M. Sharma, G.A. Lalazissis, J.König, P. Ring, Phys. Rev. Lett. 74, 3744 (1995).

    PubMed  Google Scholar 

  37. J. Dobaczewski, W. Nazarewicz, T.R. Werner, Phys. Rev. C 53, 2809 (1996).

    Google Scholar 

  38. W.Z. Jiang, Z.Z. Ren, Z.Y. Zhu, Commun. Theor. Phys. (Beijing) 41, 79 (2004).

    Google Scholar 

  39. T. Bengtsson, I. Ragnarsson, Nucl. Phys. A 436, 14 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Z. Jiang.

Additional information

A. Molinari

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, W.Z., Ren, Z.Z., Wang, T.T. et al. Relativistic mean-field study for Zn isotopes. Eur. Phys. J. A 25, 29–39 (2005). https://doi.org/10.1140/epja/i2004-10235-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2004-10235-1

PACS.

Navigation