Skip to main content
Log in

Spectroscopy of pentaquark states

  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

We construct a complete classification of qqqq¯q pentaquark states in terms of the spin-flavour SU(6) representations. We find that only some definite SU(3) representations are allowed, that is singlets, octects, decuplets, anti-decuplets, 27-plets and 35-plets. The latter three contain exotic states, which cannot be constructed from three quarks only. This complete classification is general and model independent and is useful both for model builders and experimentalists. The mass spectrum is obtained from a Gürsey-Radicati type mass formula, whose coefficients have been determined previously by a study of qqq-baryons. The ground-state pentaquark, which is identified with the recently observed Θ+(1540) state, is predicted to be an isosinglet anti-decuplet state. Its parity depends on the interplay between the spin-flavour and orbital contributions to the mass operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Nakano, Phys. Rev. Lett. 91, 012002 (2003).

    Article  Google Scholar 

  2. V.V. Barmin, Phys. At. Nucl. 66, 1715 (2003).

    Article  Google Scholar 

  3. J. Barth, Phys. Lett. B 572, 127 (2003).

    Article  Google Scholar 

  4. S. Stepanyan, Phys. Rev. Lett. 91, 252001 (2003)

    Article  Google Scholar 

  5. A.E. Asratyan, A.G. Dolgolenko, M.A. Kubantsev, Phys. At. Nucl. 67, 682 (2004).

    Article  Google Scholar 

  6. A. Airapetian, Phys. Lett. B 585, 213 (2004).

    Article  Google Scholar 

  7. A. Aleev, hep-ex/0401024.

  8. C. Alt, Phys. Rev. Lett. 92, 042003 (2004).

    Article  Google Scholar 

  9. H.J. Lipkin, in ‘‘Hadrons, Quarks and Gluons’’, in Proceedings of the Hadronic Session of the XXIInd Rencontre de Moriond, edited by J. Tran Thanh Van (Editions Frontières, Gif-Sur-Yvette, France, 1987) p. 691

  10. H. Högaasen, P. Sorba, Nucl. Phys. B 145, 119 (1978)

    Article  Google Scholar 

  11. A.V. Manohar, Nucl. Phys. B 248, 19 (1984).

    Article  Google Scholar 

  12. M. Chemtob, Nucl. Phys. B 256, 600 (1985).

    Article  Google Scholar 

  13. M. Praszalowicz, in Skyrmions and Anomalies, edited by M. Jezabek, M. Praszalowicz (World Scientific, 1987) pp. 112-131

  14. D. Diakonov, V. Petrov, M. Polyakov, Z. Phys. A 359, 305 (1997).

    Article  Google Scholar 

  15. D. Borisyuk, M. Faber, A. Kobushkin, hep-ph/0307370.

  16. H. Weigel, Eur. Phys. J. A 2, 391 (1998)

    Article  Google Scholar 

  17. B.K. Jennings, K. Maltman, hep-ph/0308286.

  18. Fl. Stancu, Phys. Rev. D 58, 111501 (1998)

    Article  Google Scholar 

  19. C. Helminen, D.O. Riska, Nucl. Phys. A 699, 624 (2002).

    Article  Google Scholar 

  20. S. Capstick, P.R. Page, W. Roberts, Phys. Lett. B 570, 185 (2003)

    Article  Google Scholar 

  21. A. Hosaka, Phys. Lett. B 571, 55 (2003)

    Article  Google Scholar 

  22. C.E. Carlson, Ch.D. Carone, H.J. Kwee, V. Nazaryan, Phys. Lett. B 573, 101 (2003)

    Article  Google Scholar 

  23. L.Ya. Glozman, Phys. Lett. B 575, 18 (2003).

    Article  Google Scholar 

  24. R.A. Williams, P. Guèye, nucl-th/0308058.

  25. Y. Oh, H. Kum, S.H. Lee, hep-ph/0310117

  26. M. Karliner, H.J. Lipkin, Phys. Lett. B 575, 249 (2003)

    Article  Google Scholar 

  27. Shin-Lin Zhu, Phys. Rev. Lett. 91, 232002 (2003)

    Article  Google Scholar 

  28. T.D. Cohen, R.F. Lebed, Phys. Lett. B 578, 150 (2004)

    Article  Google Scholar 

  29. F. Csikor, Z. Fodor, S.D. Katz, T.G. Kovács, JHEP 0311, 070 (2003)

    Article  Google Scholar 

  30. M. Genovese, J.-M. Richard, Fl. Stancu, S. Pepin, Phys. Lett. B 625, 171 (1998)

    Article  Google Scholar 

  31. D. Borisyuk, M. Faber, A. Kobushkin, hep-ph/0312213.

  32. R. Bijker, M.M. Giannini, E. Santopinto, Phys. Lett. B 595, 260 (2004), hep-ph/0403029

    Article  Google Scholar 

  33. R.P. Feynman, M. Kislinger, F. Ravndal, Phys. Rev. D 3, 2706 (1971).

    Article  Google Scholar 

  34. N. Isgur, G. Karl, Phys. Rev. D 18, 4187 (1978)

    Article  Google Scholar 

  35. R. Bijker, F. Iachello, A. Leviatan, Ann. Phys. (N.Y) 236, 69 (1994)

    Article  Google Scholar 

  36. E. Santopinto, F. Iachello, M.M. Giannini, Eur. Phys. J. A 1, 307 (1998).

    Google Scholar 

  37. See, e.g., M. Gell-Mann, Y. Ne’eman, The Eightfold Way (W.A. Benjamin, Inc., New York, 1964).

  38. F. Gürsey, L.A. Radicati , Phys. Rev. Lett. 13, 173 (1964).

    Article  Google Scholar 

  39. M.M. Giannini, E. Santopinto, A. Vassallo, to be published.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Giannini.

Additional information

V. Vento

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bijker, R., Giannini, M.M. & Santopinto, E. Spectroscopy of pentaquark states. Eur. Phys. J. A 22, 319–329 (2004). https://doi.org/10.1140/epja/i2003-10232-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2003-10232-x

Keywords

Navigation