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Dipartimento di Fisica dell’Università di Milano, I-20133 Milano, Italy and INFN sezione di Milano, Milano, Italy

Received: 29 September 2003 /
Published online: 24 August 2004 – c© Società Italiana di Fisica / Springer-Verlag 2004
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Abstract. We discuss the details of the recently proposed Monte Carlo method to evaluate the exact
energies of yrast levels. Energy levels are evaluated up to J = 18 with small statistical errors using
the Metropolis method for the case of 166Er using the pairing plus quadrupole model within one major
shell. We also discuss the evaluation of the probabilities of the Hartree-Fock-Bogoliubov wave functions
in the corresponding yrast eigenstates and they are found to be large. The model displays a too strong
backbending behaviour not seen experimentally.
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1 Introduction

The shell model method has been a valuable tool for a
detailed description of nuclear eigenstates. Its application
has been limited by the large size of the Hamiltonian ma-
trix to be diagonalized. Although it has been used ex-
tensively for light nuclei, heavy and medium-heavy nuclei
have been up to date outside of the reach of the shell model
approach. In the past decades, the application of the
Hubbard-Stratonovich (HS) transformation, ref. [1], to the
nuclear many-body problem has been extensively explored
(see, for example, ref. [2]). The essential physical content
of this transformation is the evaluation of the exponential
of the many-body Hamiltonian e−βĤ in terms of a sum of
an infinite number of exponentials of one-body Hamilto-
nians. The above operator, for sufficiently large-β projects
the exact ground state of the many-body Hamiltonian out
of a trial wave function. Observables can in principle be
computed using such a projected wave function.

Recently we have introduced a method that allowed
the Monte Carlo evaluation, of the energies of angular
momentum and parity projected eigenstates of the form
P̂JJe−βĤ |ψ〉, where P̂JJ is the projector to good angular
momentum J and z-projection Jz = J and |ψ〉 is a particle
number projected HFB wave function (ref. [3]). With this
method yrast energies have been evaluated with a small
statistical error using the Metropolis sampling method
(ref. [4]), including the full many-body basis, without any
remnant of the shell model diagonalization method.
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In ref. [5] it has been proposed that the same HS trans-
formation, applied to e−βĤ acting on trial Hartree-Fock
wave functions, could be used to construct an optimized
many-body basis in which the shell model Hamiltonian
can be diagonalized. Although in this last approach there
is no guarantee that the many-body basis is sufficiently
large and no method was given to estimate the statisti-
cal error, it was shown that properties of yrast levels, and
of excited states, could be evaluated. The most advanced
form of this approach uses angular-momentum projected
Hartree-Fock-Bogoliubov (HFB) wave functions, rather
than Hartree-Fock wave functions, as trial states.

In ref. [6], Monte Carlo calculations in the rare-earth
region have been discussed in order to extract thermal
properties of nuclei. In the approach we propose, individ-
ual excited states can be studied explicitly rather than as
a statistical average.

The purpose of this article is to describe the details of
the method used in ref. [3] and to complete the calculation
of the yrast band up to J = 18. The functional integral
formulation which was used, is the same used in the Monte
Carlo calculations of refs. [7]. This functional integral for-
mulation, because of the small number of auxiliary fields,
allows a reasonably fast sampling of the functional integral
compared to other formulations.

Since HFB wave functions are considered accurate ap-
proximations to the exact wave functions, they were se-
lected so that small values of β are necessary to converge
to the yrast levels. This has the advantage that sampling
the integration volume with the Metropolis method is rea-
sonably fast. Since we evaluate only angular-momentum
projected energies, only high-lying excited states of the
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same angular momentum have to be filtered out by the
operator P̂JJe−βĤ and this itself implies the need of small
values of the parameter β.

Moreover, since sign oscillations usually appear at
large values of β, the use of these wave functions could
potentially mitigate the sign problem.

The outline of this paper is as follows. In sect. 2 we dis-
cuss the method for the evaluation of the yrast energies. In
sect. 3 we give explicit expressions for the matrix elements
for one particle species which enter the calculation. In sect.
4 we discuss the problem of the overlaps of HFB wave func-
tions with yrast eigenstates, and in sect. 5 we summarize
and discuss the numerical results obtained so far.

2 The method for the evaluation of the yrast
energies

If Ĥ is the many-body shell model Hamiltonian and
P̂JM is the projector to good angular momentum J
and z-component of the angular momentumM , the basic
quantity we want to evaluate is

E(β,N,Z, J) =

〈ψNZ|P̂ (J)
JJ Ĥe−β(Ĥ−ωĴz−µnN̂n−µpN̂p)|ψNZ〉

〈ψNZ|P̂ (J)
JJ e−β(Ĥ−ωĴz−µnN̂n−µpN̂p)|ψNZ〉

, (1)

where Ĵz is the z-component of the angular-momentum
operator, ω is a cranking frequency, N̂n(p) is the neu-
tron (proton) particle number operator and µn(p) is neu-
tron (proton) chemical potential. The trial wave function
|ψNZ〉 is a particle number projected HFB wave func-
tion for N valence neutrons and Z valence protons and,
in terms of the neutron (proton) particle number projector
P̂N(Z), is given by

|ψNZ〉 = P̂N |ψn〉P̂Z |ψp〉,

where |ψτ 〉 (τ = n, p) is a wave function of the type

|ψ〉 = exp


1
2

∑
i,j

a†iX ija
†
j


 |0〉 (2)

a†i being the creation operator of the single-particle (neu-
tron or proton) state i, X a variationally determined an-
tisymmetric matrix and |0〉 is the particle vacuum. In
eq. (1), the cranking frequency has been introduced so
that the unprojected lowest-energy state has Jz = J
and the chemical potential so that the lowest-energy
state has neutron (proton) particle number N (Z). This
is done in view of the fact the functional integral ex-
pression for the exponential of the Hamiltonian in eq. (1)
breaks the rotational symmetry and therefore the propa-
gator in the functional integral (see below) propagates all
angular-momentum components of the HFB wave func-
tion, and not just the desired one, giving stronger weight

to the angular-momentum component having the low-
est energy. Since the Monte Carlo evaluation of eq. (1)
hinges on the method of importance sampling, the lack
of the cranking term would lead to the sampling of
states which would have to be cancelled out by the
angular-momentum projection. In principle one could use
the angular-momentum projector both at the left and
at the right of the propagator in eq. (1), but such a
double angular-momentum projection, besides being pro-
hibitively expensive, would not prevent the propagation
of angular-momentum components different from the de-
sired J value. Analogous considerations can be made to
justify the presence of the chemical potentials.

The energy evaluated using eq. (1) is a monotonically
decreasing function of the parameter β and for β = 0
eq. (1) gives the expectation value of the Hamiltonian with
angular-momentum projected HFB wave functions

EHFB(N,Z) =
〈ψNZ|P̂ (J)

JJ Ĥ|ψNZ〉
〈ψNZ|P̂ (J)

JJ |ψNZ〉
. (3)

Therefore it is quite reasonable to expect that the best
variational wave functions will lead to the yrast energies
even at small values of β. In this context, these wave func-
tions should be selected so that they minimize the right-
hand side of eq. (3). In practice, since the variational de-
termination of |ψNZ〉 is by itself computationally time
consuming, we selected only wave functions which mini-
mize the Jz projected energy functional of eq. (3). In the
case of the ground state no angular-momentum projector
is necessary in the determination of the trial wave func-
tion, although the full projector was used in the evaluation
of eq. (1) as discussed below.

The calculations which will be discussed later, are rel-
ative to the pairing plus quadrupole model limited to one
major shell for neutrons and one major shell for protons.
For this model the functional integral for the exponen-
tial of the Hamiltonian, which we use for the evaluation
of eq. (1), has a simple and appealing form. It leads to
the smallest number of integration variables. The model
Hamiltonians is

Ĥ = Ĥ0n + Ĥ0p + V̂Q −GnP̂
†
nP̂n −GpP̂

†
p P̂p, (4)

with Ĥ0n (Ĥ0p) being the spherical independent single-
particle Hamiltonian for the neutrons (protons), V̂Q is the
quadrupole interaction

V̂Q = −1
2
χ

a=2∑
a=−2

(c2nQ̂na + c2pQ̂pa)(c2nQ̂na + c2pQ̂pa) (4′)

with the allowance of different n-n, p-p and n-p quadrupole
coupling constants1. The operators appearing in eq. (4′)
are the Cartesian components of the spherical tensor op-
erators. In eq. (4), P̂ † is the monopole pair creation op-
erator. Using the Hubbard-Stratonovich transformation

1 In the numerical calculations described later these coupling
constants were chosen as in ref. [8], with cn = (2N/A)1/3 and
cp = (2Z/A)1/3.
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(ref. [1]) one obtains

e−β(Ĥ−µnN̂n−µpN̂p−ωĴz) = e−βGnΩn/2−βGpΩp/2N

×
∫ Nt∏

m=1

∏
τ=n,p

(dφ(τ)
xmdφ

(τ)
ym)

×
2∏

a=−2

dσame−
1
2

∑
am σ2

am− 1
2

∑
mτ (φ(τ)2

xm +φ(τ)2
ym )Û . (5)

In this equation N is an irrelevant normalization constant
and

Û = Û (n)Û (p) ,

Û (τ) = Û (τ)
Nt
Û

(τ)
Nt−1 . . . Û

(τ)
1 , (τ = n, p) , (6)

Û (τ)
m = exp

[
− εĤ(τ)′

0 −
√
εχ

∑
a

σamc
2
τ Q̂

(τ)
a

−
√
εGτ/2(φ(τ)

m P̂ (τ) + φ(τ)�
m P̂ (τ)†)

]
, (7)

for m = 1, . . . , Nt and φ
(τ)
m = φ(τ)

xm + iφ(τ)
ym.

In eq. (7), Ĥ(τ)′
0 = Ĥ

(τ)
0 − ωĴ (τ)

z − µ(τ)′N̂ (τ) and µ′τ =
µτ + Gτ/2 and Ωτ is one half of the number of single
particle states. The label τ = n, p refers to the neutrons
or to the protons. Nt is the number of time intervals and
ε = β/Nt.

The propagator Û for both neutrons and protons is
Hermitian in the static limit (i.e. Nt = 1). In order not
to overburden the equation, since the propagator Û is a
product of a neutron propagator and a proton propagator,
we shall simply write for each particle species at any time
interval

Ûm = exp
[
K̂m +

1
2
(Π̂m + Π̂†

m)
]
, (8)

with K̂m being a Hermitian operator of the type, in a
matrix notation, a†Kma and Π̂m a pairing operator of the
type aΠma. For later convenience we rewrite eq. (8) as

Ûm = exp
[
1
2
(a†a)

(
Km −Π�

m

Πm −K̃m

)(
a
a†

) ]
exp

[
1
2
trKm

]

≡ Ŵmexp
[
1
2
trKm

]
(9)

with the matrix Km given by

(Km)ij = −ε(εi−µ′−ωmi)δij−√
εχc2

∑
a

σam(qa)ij (10)

with εi being the single-particle energies, mi the single-
particle eigenvalues of jz and qa the single-particle
quadrupole moment. The skew-symmetric matrix Πm

in eq. (9) for the monopole pairing interaction has
non-zero matrix elements (Πm)ij =

√
2εGφmδ−ij , where

−i denotes the time-reversal partner of the single-particle
state i. The operator Ŵm is defined by eq. (9). Schemati-
cally, if we denote by dx the integration volume, by G(x)

the Gaussian weight and the numerical factors appearing
in eq. (5), the functional integral can be written in a
compact form as

e−β(Ĥ−µnN̂n−µpN̂p−ωĴz) =
∫

dxG(x)Ŵ (n)Ŵ (p) (11)

and the neutron (proton) propagator is the time-ordered
product of the Nt operators Ŵm. The angular-momentum
projector in eq. (1) is given by

P̂
(J)
JJ =

2J + 1
8π2

∫
dΩED

(J)∗
JJ (ΩE)R̂(ΩE), (12)

where ΩE = (θ1θ2θ3) is the collection of the three Euler
angles, dΩE = dθ1 sin θ2dθ2dθ3 , D(J)

JJ is the Wigner
function and

R̂(ΩE) = eiθ3Ĵzeiθ2Ĵyeiθ1Ĵz , (13)

is the rotation operator. The evaluation of eq. (1) is then
reduced to the evaluation of the following functional
integrals (separately or their ratio):

〈Ô〉 =
∫

dxG(x)
∫

dΩED
(J)�
JJ

×〈ψNZ|R̂(ΩE)ÔŴ (n)Ŵ (p)|ψNZ〉 (14)

for Ô = 1 and Ô = Ĥ. Since sampling the integration
space with the the angular-momentum projection is very
time consuming we rewite eq. (14) as

〈Ô〉 = Re
∫

dxG(x)〈ψNZ|W (n)Ŵ (p)|ψNZ〉

×
∫
dΩED

(J)�
JJ 〈ψNZ|R̂(ΩE)ÔŴ (n)Ŵ (p)|ψNZ〉
〈ψNZ|W (n)Ŵ (p)|ψNZ〉 , (15)

where Re denotes the real part. If we set
G(x)〈ψNZ|W (n)Ŵ (p)|ψNZ〉 = eA+iB, call E the ra-
tio in eq. (15), s(x) the sign of cosB and define the
probability distribution in the importance sampling as
p(x) = eA+ln | cosB|, then

〈Ô〉 =
∫

dx p(x)s(x)[Re(E)− tanB Im(E)]. (16)

This quantity is evaluated, up to the normalization of
p(x), which cancels out in the ratio of eq. (1), with the
Metropolis method (ref. [4]). In other words we evaluate
〈Ĥ〉 and 〈1〉 by sampling the functional integrals in
eq. (16) with an unprojected probability distribution.

The first task in a Monte Carlo calculation is to obtain
a set of statistically independent integration points {x} ac-
cording to the distribution p(x), without actually evalu-
ating the observables; only after a set of statistically inde-
pendent integration points has been obtained the angular-
momemtum projected matrix elements are evaluated. The
criterion that we use in fixing p(x) is that it must approx-
imate as much as possible the angular-momentum pro-
jected matrix elements G(x)〈ψNZ|P̂JJW (n)Ŵ (p)|ψNZ〉
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for the most relevant integration points. That is the inte-
gral

∫
dx G(x)〈ψNZ|W (n)Ŵ (p)|ψNZ〉 should be the best

approximation to 〈ψNZ|P̂JJe−βĤ |ψNZ〉. In turn this im-
plies that the cranking frequency in principle should be
fixed by a Monte Carlo calculation (see also sect. 5).
This completes the discussion of the basic idea behind
the method used in the evaluation of the yrast energies.

The remaining task is to give explicit expressions, for
matrix elements for one particle species, of the type

O1(M̂) = 〈ψN |R̂(ΩE)M̂Ŵ |ψN〉 (17)

which appear in the evaluation of the integrand in eq. (15),
where M̂ can be a one-body operator, a two-body operator
for a single particle species, or 1.

3 Expressions for the one particle species
matrix elements

The evaluation of eq. (17) implies a double particle num-
ber projection for every set of the Euler angles. As usually
done, we first evaluate

O1(M̂, αp, αq) = 〈ψ|eαpN̂ R̂(ΩE)M̂Ŵ eαqN̂ |ψ〉 (18)

and then isolate the N -th power of both zp = eαp and
zq = eαq . The calculation is summarized in the appendix.
The results are as follows. First the single-particle matrix
Wij defined as the time-ordered product

W =
Nt∏

m=1

exp
(
Km −Π�

m

Πm −K̃m

)
, (19)

is constructed. From the square submatrices
W11,W12,W21 and W22 of W , the matrices C =W12W

−1
22

and D = W−1
22 W21 are then evaluated. The single-

particle representation (first quantized), r, of the rotation
operator is constructed. Then

O1(M = 1, zp, zq) =

|W22|1/2|1 + z2qDX|1/2|1− z2p r̃X�rXq|1/2 (20)

with

Xq = C + z2qW̃
−1
22 X(1 + z2qDX)−1W−1

22 (21)

and, if T̂ = a†Ta in a matrix notation is a one-body op-
erator,

O1(M̂ = T̂ , zp, zq) = O1(M = 1, zp, zq)tr(ρT ) (22)

and, if V̂2 is a two-body operator, then

O1(M̂ = V̂2, zp, zq) = O1(M̂ = Q̂, zp, zq)

×
[
−1
4
z2pKjiV ijsrKsr +

1
2
ρsiV ijsrρrj

]
(23)

with V being the antisymmetrized two-body potential,
and

ρ = 1− F̃ , F = (1− z2p r̃X�rXq)−1 , (24)

K = F r̃X�r, K = XqF . (25)

The remaining point is the determination of the sign of
the square root of the determinants in eq. (20). Here we
recall the results of ref. [7]. The square root of |1+z2qDX|
is evaluated by considering one eigenvalue of DX for
every degenerate pair (since the product of two skew-
symmetric matrices as D and X has a degenerate spec-
trum). No additional sign is present. Similarly one argues
for |1− z2p r̃X�rXq|. For the square root of |W22| we make
use of the following formula for the trace of eαN̂Ŵ in the
grand canonical ensemble (ref. [7]):

trg.c.[eαN̂Ŵ ] = |W22|1/2|1 + zM|1/2, (26)

where M can be proven to be given by

M =
(
W̃−1

22 C
−D W−1

22

)
. (27)

Since the eigenvalues of M must be degenerate (since the
left-hand side is a polynomial in z = eα), |1 + zM|1/2
can be evaluated by taking one eigenvalue of M for ev-
ery degenerate pair, without extra sign2 since z can be
taken close to zero. Hence the evaluation of the left-hand
side of eq. (26) gives the proper sign of |W22|1/2, say for
z = 1. At high temperature the sign of trg.c.Ŵ is free of
ambiguities since the eigenvalues of W are nearly real. If
the temperature is not too high, as in ref. [7] one divides
the interval [0, β] into two intervals say 1 and 2. Then
W22 = W

(2)
22 (1 + D(2)C(1))W (1)

22 and one can proceed by
evaluating the square root of W22 at smaller values of β.
This last method has been implemented in the computer
programs by iterating twice.

4 The evaluation of the overlaps

Although not essential for the method described in the
previous section, we describe here a method for the evalu-
ation of the probabilities of Monte Carlo yrast wave func-
tions in the HFB wave functions. To motivate this prob-
lem let us assume that any yrast HFB wave function |ψ〉,
inclusive of the projectors, can be expanded in terms of
the exact eigenstates of the Hamiltonian with small coeffi-
cients for excited states, i.e. |ψ〉 = ∑

i ci|i〉 with c0 ≈ 1 and
ck ≈ 0 for k = 1, 2, . . . and let us estimate qualitatively
the Monte Carlo error for the energies. Schematically the
Hubbard-Stratonovich transformation can be rewritten as

2 Such an extra sign is independent of z since the left-hand
side is a polynomial in z, |W22|1/2 is a c-number and |1+zM|1/2

is also a polynomial of z and both polynomials are continous
functions of z. Hence such an extra sign which could take the
values ±1 must be a constant.
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e−βĤ =
∑

x Ŵ (x), where x is the multidimensional inte-
gration point and Ŵ (x) denotes the propagators (here in-
clusive of all coefficients) in the functional integral. Then,
up to first order,

〈ψ|Ĥe−βĤ |ψ〉 =
∑
x

{E0[〈0|Ŵ (x)|0〉

+
∑
i>0

(〈0|Ŵ (x)|i〉ci + 〈i|Ŵ (x)|0〉c�i )]

+
∑
i>0

c�i (Ei − E0)〈i|Ŵ (x)|0〉} (28)

and

〈ψ|e−βĤ |ψ〉 =
∑
x

[〈0|Ŵ (x)|0〉

+
∑
i>0

(〈0|Ŵ (x)|i〉ci + 〈i|Ŵ (x)|0〉c�i )]. (29)

In a Monte Carlo calculation one evaluates the ratio of
eq. (28) to eq. (29) by selecting a distribution function,
say p(x), rewrites the ratio of eq. (28) to (29) as

〈Ĥ〉 =
∑

x p(x)E0[ρ(x) + δ(x)]/p(x)∑
x p(x)ρ(x)/p(x)

(30)

and then evaluates the numerator and the denominator
with important sampling using p(x) as a distribution. In
eq. (30), as a shorthand notation, we denoted as ρ(x) the
term in the sum over x in eq. (29), and as ρ(x) + δ(x)
the coefficient of E0 in eq. (28), after it is factored out.
Since we assumed small ck>0, δ(x) is generally small com-
pared to ρ(x), and if p(x) is large when |ρ(x)| is large,
the numerator is nearly proportional to the numerator.
Therefore the Monte Carlo error of the energy is the error
of a ratio of the type a/b, where a is a random variable
almost proportional to the random variable b, hence the
statistical error would be small. If this condition of almost
proportionality is met, the statistical error can be small
even in presence of sign fluctuations in the functional in-
tegral. This is true to the extent that the HFB wave func-
tions are a good approximation to the eigenstates of the
Hamiltonian, and provided, of course, that the distribu-
tion used in the sampling does not sample regions where
|ρ(x)|/p(x) is small and |δ(x)|/p(x) is large. In the limit
of exact wave functions, the statistical error goes to zero.

The probabilities of the exact yrast wave functions in
the HFB wave functions for a given J are given by, for
sufficiently large β,

CJ =
〈ψ|P̂JJe−βĤ |ψ〉2
〈ψ|P̂ e−2βĤ |ψ〉 . (31)

Ideally, eq. (31) can be evaluated using the differen-
tial equation d lnN/dβ = −E(β), for the norm N (β) =
〈ψ|P̂JJe−βĤ |ψ〉, where EJ(β) is given by

EJ(β) =
〈ψ|P̂JJĤe−βĤ |ψ〉
〈ψ|P̂JJe−βĤ |ψ〉 . (32)

Equation (31) can then be rewritten as (we explicitly in-
sert the argument β in CJ)

CJ(β) = exp
[∫ 2β

0

EJ (t)dt− 2
∫ β

0

EJ (t)dt
]
. (33)

If a given value of β is not deemed sufficiently large so that
EJ (β) is identified with the energy of the yrast level, but
2β is, the following approximate formula gives the size of
the correction with respect to higher values of β:

CJ(2β)
CJ (β)

= e−β[EJ (β)−EJ (2β)]. (34)

For very large β, if E�(β) = E(β) − E(∞), eq. (33)
becomes

CJ(∞) = exp
[
−

∫ ∞

0

E�(β)dβ
]
. (33′)

Instead of using eq. (33) or (33′) to evaluate CJ , which
requires the computationally expensive evaluation of the
energies for several β values, we evaluate directly eq. (31)
in the following way. First we write the functional inte-
gral expressions for the numerator and the denominator
appearing in eq. (31). Then we evaluate the ratio of the
functional integrals with the Metropolis method (ref. [4])
using the same probability distribution, for both the nu-
merator and the denominator. This method is computa-
tionally less expensive, although statistically not very ac-
curate since the matrix elements in the numerator and
in the denominator in eq. (31) have different values of β.
Before proceeding, let us rewrite eq. (31) as

CJ =
〈ψ|P̂JJe−β[Ĥ−ω(β)Ĵz−µn(β)N̂n−µp(β)N̂p]|ψ〉2

〈ψ|P̂JJe−2β[Ĥ−ω(2β)Ĵz−µn(2β)N̂n−µp(2β)N̂p]|ψ〉K
(35)

with

K =
e2β[ω(2β)J+µn(2β)N+µp(2β)Z ]

e2β[ω(β)J+µn(β)N+µp(β)Z ]
. (36)

Let us write the functional integrals in the schematic form,
as in sect. 2, as

e−β(Ĥ−µnN̂n−µpN̂p−ωĴz) =
∫

d9xGβ(9x)Ŵ , (37)

e−2β(Ĥ−µnN̂n−µpN̂p−ωĴz) =∫
d9x2d9x1G2β(9x2, 9x1)Ŵ (9x2)Ŵ (9x1). (37′)

The integration vector 9x in eq. (37) denotes all the inte-
gration variables at the time intervals n = 1, 2, . . . , Nt

while in eq. (37′) the integration vectors 9x1 and 9x2

are the integration variables at n = 1, 2, . . . , Nt and
n = Nt + 1, . . . , 2Nt, respectively. The meaning of the
functions Gβ and G2β is the same as in sect. 2.

The time interval ε, implicit in eqs. (37) and (37′),
is the same. The propagator in eq. (37′) was explicitly
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CJ = K

∫
d�x2d�x1ρ(�x2, �x1)Gβ(�x2)Gβ(�x1)

〈ψ|P̂ Ŵ (	x2)|ψ〉〈ψ|P̂ Ŵ (	x1)|ψ〉
ρ(	x2,	x1)∫

d�x2d�x1ρ(�x2, �x1)G2β(�x2, �x1)
〈ψ|P̂ Ŵ (	x2)Ŵ (	x1)|ψ〉

ρ(	x2,	x1)

(39)

written as the product of the propagator from 0 to β and
of the propagator from β to 2β.

Equation (35) can now be rewritten as

CJ =

K

∫
d9x2d9x1Gβ(9x2)Gβ(9x1)〈ψ|P̂ Ŵ (9x2)|ψ〉〈ψ|P̂ Ŵ (9x1)|ψ〉∫

d9x2d9x1G2β(9x2, 9x1)〈ψ|P̂ Ŵ (9x2)Ŵ (9x1)|ψ〉
.

(38)

For the purpose of the evaluation of this expression with
Monte Carlo methods, eq. (38) is further rewritten as

see equation (39) above

with
ρ(9x2, 9x1) = G2β(9x2, 9x1)|〈ψ|Ŵ (9x2)Ŵ (9x1)|ψ〉| (40)

being the absolute value of the angular-momentum un-
projected integrand appearing in eq. (37′) at the inverse
temperature 2β 3. Since ρ(9x2, 9x1) contains the cranking
frequency (and the chemical potentials), it generates, with
higher probability, states with Mz = J and the appropri-
ate number of particles and it can be used as a density
distribution in the Metropolis method.

5 Calculations of yrast levels

In this section we discuss the calculations performed so
far for the yrast states of 166Er. Some of them have al-
ready been presented in ref. [3], for Jπ = 0+, 2+, 4+, 6+

and 12+. We completed the calculations up to Jπ = 18+.
The strength of n-n, p-p, and n-p quadrupole force (cf.
eq. (4′)) and the oscillator length for neutrons and pro-
tons are as in ref. [8], i.e. b2n,p = b2/cn,p and χb4 = 70
MeV/A1.4. The cranking frequencies used in the calcula-
tions were obtained in the following way. Instead of fixing
the cranking frequencies with the requirement that

〈ψNZ|Ĵze−β(Ĥ−ωĴz)|ψNZ〉
〈ψNZ|e−β(Ĥ−ωĴz)|ψNZ〉 = J, (41)

we fix these frequencies only using the mean-field propa-
gator. The results for the energies do not depend on these
values, since they do not affect the angular-momentum
projected matrix elements, but they do affect the proba-
bility distribution p(x) used in eq. (16), that is, the values
of ω affect the Monte Carlo error. In practice this approx-
imate recipe works reasonably well, although it tends to

3 The use of this function is optimal at 2β but less so in the
evaluation of the numerator of eq. (35). However, the smaller
inverse temperatures should suppress fluctuations.

underestimate the values of ω at large values of β. The
chemical potentials have been determined with the same
method used in ref. [7].

Instead of considering the full angular-momentum pro-
jector in eq. (1), one could consider instead the projec-
tor to the good z-component of the angular momentum
Jz = J and then test whether the Monte Carlo expecta-
tion values of Ĵ2 are statistically consistent with J(J+1).
This method is not expected to be very accurate at low
angular momentum because of contamination of nearby
states with the same Jz but different J ; however it leads
to values of Ĵ2 consistent with J(J +1) at large values of
Jz. The calculations at large angular momenta have been
performed in this way.

Quantities which are revealing with respect of the
goodness of the substitution of projected probability dis-
tributions with the cranked unprojected ones are the fol-
lowing ratios of overlaps:

OJ =
〈ψNZ|P̂ (J)

JJ e−β(Ĥ−ωĴz)|ψNZ〉
〈ψNZ|e−β(Ĥ−ωĴz)|ψNZ〉 , (42)

OJz
=

〈ψNZ|P̂ (Jz =M)e−β(Ĥ−ωĴz)|ψNZ〉
〈ψNZ|e−β(Ĥ−ωĴz)|ψNZ〉 , (43)

which, depending on the projector used, give the amount
of depletion caused by the angular-momentum projection,
whether full or Jz only. If the cranking recipe well approx-
imates the projector we expect the above quantity to be
close to unity, if not it should be small. Typical values are
between 0.1 and 0.2, with a slight tendency to decrease
for larger values of β at large angular momentum. This is
probably an indication that the cranking frequencies are
off their ideal values.

The numerical results obtained so far for the energies,
inclusive of the partial ones of ref. [3], are summarized in
table 1. The calculations reported in table 1 have been per-
formed at β = 1 MeV−1 and β = 2 MeV−1. The values of
the energies indicate that the values of β are sufficiently
large. The 4th column in table 1 indicates the type of
angular-momentum projector used in the calculation. Also
shown are the expectation values of 〈Ĵ2〉 with their sta-
tistical error. In the case the full angular-momentum pro-
jector is used, these values are only their nominal values.

The calculations proceed as follows. After the chemi-
cal potentials and the cranking frequencies have been se-
lected, the cranked unprojected probability distribution
p(x), given by

p(x) = |Re[G(x)〈ψNZ|W (n)Ŵ (p)|ψNZ〉]| (44)

(cf. eq. (15)), is generated with the Metropolis method. We
keep typically one every 50 or 60 of the integration points.
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Table 1. Monte Carlo results for selected yrast states of 166Er. The column labeled P̂ identifies the type of projection. If only
the z-component of the angular momentum is projected, the expectation values of J2 are given with the statistical error. If
J2, Jz are projected 〈J2〉 is the nominal value. Ns is the number of samples, and “ac” is the autocorrelation of the energy
samples. O is given by eq. (42) or eq. (43).

β State 〈J2〉 P̂ Ns ac O E (MeV)

1 0+ 0 J2, Jz 97 0.02 0.080 ± 0.009 −112.860 ± 0.052(a)

2 0+ 0 J2, Jz 108 −0.028 0.27 ± 0.1 −112.876 ± 0.119(a)

1 2+ 6 J2, Jz 93 0.12 0.119 ± 0.009 −112.532 ± 0.033(a)

2 2+ 6 J2, Jz 93 −0.05 0.16 ± 0.02 −112.643 ± 0.061(a)

1 2+ 10.4 ± 1.3 Jz 83 0.07 0.17 ± 0.02 −112.399 ± 0.064(a)

2 2+ 6.7 ± 2.4 Jz 102 −0.009 0.22 ± 0.03 −112.602 ± 0.140(a)

1 4+ 20 J2, Jz 104 0.14 0.133 ± 0.009 −112.165 ± 0.052(a)

2 4+ 20 J2, Jz 98 0.0008 0.12 ± 0.02 −112.146 ± 0.121(a)

1 4+ 25 ± 1 Jz 120 0.03 0.16 ± 0.01 −112.014 ± 0.059(a)

2 4+ 22 ± 4 Jz 91 −0.03 0.18 ± 0.03 −112.132 ± 0.086(a)

1 6+ 42 J2, Jz 89 0.25 0.114 ± 0.007 −111.626 ± 0.041(a)

2 6+ 42 J2, Jz 97 −0.07 0.14 ± 0.01 −111.656 ± 0.040(a)

1 6+ 45 ± 1 Jz 180 0.02 0.121 ± 0.006 −111.583 ± 0.033(a)

2 6+ 40.1 ± 2.4 Jz 102 0.03 0.13 ± 0.01 −111.701 ± 0.076(a)

1 8+ 76.3 ± 1.5 Jz 114 −0.01 0.124 ± 0.016 −111.026 ± 0.032

2 8+ 73.3 ± 1.9 Jz 97 0.03 0.098 ± 0.015 −111.035 ± 0.056

1 10+ 119 ± 1 Jz 89 0.05 0.099 ± 0.007 −110.462 ± 0.040

2 10+ 117 ± 2 Jz 137 −0.008 0.063 ± 0.006 −110.535 ± 0.039

1 12+ 162 ± 1 Jz 115 0.008 0.101 ± 0.006 −110.164 ± 0.052(a)

2 12+ 158 ± 4 Jz 107 0.06 0.1 ± 0.01 −110.283 ± 0.097(a)

1 14+ 216 ± 1 Jz 111 0.05 0.16 ± 0.01 −110.082 ± 0.035

2 14+ 214 ± 1 Jz 102 −0.02 0.13 ± 0.02 −110.116 ± 0.057

1 16+ 275 ± 1 Jz 124 −0.03 0.14 ± 0.02 −109.709 ± 0.041(b)

2 16+ 275 ± 2 Jz 111 0.03 0.11 ± 0.02 −109.669 ± 0.049(b)

2 18+ 346 ± 1 Jz 99 −0.02 0.12 ± 0.02 −109.156 ± 0.049

(a) Levels up to J = 6 and the J = 12 level were evaluated in ref. [3].

(b) From ref. [9].

This subset of integration points is then tested for the
presence of correlation in the energy (at this stage we use
the Jz projected values). If the absolute value of the auto-
correlation in the energy is larger 0.1, we keep more distant
(in the sense of Monte Carlo time) integration points. Typ-
ically we end up keeping one integration point every few
hundreds. The numbers below the column labeled “ac”
give the residual autocorrelation of the projected energy
(fully angular-momentum projected or only partial, de-
pending on the projector used in the evaluation of eq. (1)).

The starting HFB wave functions were determined up
to a certain amount of accuracy. An indication of the ac-
curacy, with respect to the adopted minimization method,
is the gradient of the energy functional. The values of the
angular-momentum projected energy after variation of the
input HFB wave functions as well as the highest value of
the gradient of the energy functional are shown in table 2.
Better wave functions are expected to improve the perfor-
mance of the Monte Carlo method.

The Monte Carlo calculations were performed with
constant ε = β/Nt = 0.0625 MeV−1. In the case of the
ground state, a calculation, not shown in the table, was
performed at β = 0.625 MeV−1. The result for the en-
ergy is E = (−112.869 ± 0.066) MeV. This result was
obtained with 99 samples of the energy with a residual
autocorrelation of 0.07. Keeping in mind that the results
of the calculations are of probabilistic nature, we notice
that this value for the ground state is nearly the same as
the one obtained with β = 2 MeV−1. This constancy for
the ground-state energy obtained with the Monte Carlo
calculation, as well as the relatively small discrepancy
((567 ± 119) KeV) between the Monte Carlo value and
the HFB energy, together with eq. (33′), which gives the
probability of the ground state in the HFB wave function,
suggests a rather large overlap between the ground state
and the HFB wave function, although this last one was
far from being the best possible HFB wave function. A
determination of the probability using eq. (33′) is time
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Table 2. Values for the input HFB wave functions for 166Er.
The column labeled P̂ identifies the type of projection used
in the variational calculation. The column labeled max. grad.
gives the maximum value of the gradient of the energy func-
tional. The energies are angular-momentum projected values
after variation for the purpose of comparison with the corre-
sponding Monte Carlo values.

State P̂ max. grad. E (MeV)

0+ none 9 × 10−5 −112.309

2+ Jz 0.004 −112.133

4+ Jz 0.014 −111.726

6+ Jz 0.003 −111.264

8+ Jz 0.009 −110.690

10+ Jz 0.006 −110.195

12+ Jz 0.03 −109.832

14+ Jz 0.01 −109.715

16+ Jz 0.02 −109.327

18+ Jz 0.008 −108.860

Table 3. Monte Carlo results for the probability CJ of eq. (39)

for some yrast states of 166Er. The column labeled P̂ identi-
fies the type of projection. Ns is the number of decorrelated
samples used in the evaluation of CJ .

State P̂ Ns β CJ

0+ J2, Jz 174 1 0.31 ± 0.11

0+ J2, Jz 97 0.5 0.68 ± 0.19

2+ J2, Jz 282 1 0.47 ± 0.19

4+ J2, Jz 128 1 0.85 ± 0.28

6+ J2, Jz 101 1 0.34 ± 0.06

6+ J2, Jz 98 0.5 0.63 ± 0.11

8+ Jz 97 1 0.84 ± 0.23

10+ Jz 130 1 0.95 ± 0.22

12+ Jz 130 1 0.95 ± 0.23

14+ Jz 102 1 0.81 ± 0.20

16+ Jz 111 1 0.63 ± 0.26

18+ Jz 99 1 0.61 ± 0.25

consuming, and, in order to have an idea of this quantity,
we performed a calculation of these probabilities using the
method sketched in sect. 4 (cf. eq. (39)). Equation (33′)
requires the calculation of the function E(β) at several val-
ues of β for the yrast states, while eq. (39) requires only
one extra Monte Carlo calculation for every yrast state.

It should be kept in mind that a Monte Carlo evalua-
tion of eq. (39) may fail to properly sample the numerator,
since the integration points were obtained by sampling the
denominator of eq. (39), which has a different value of β
from the numerator. Therefore the calculations performed
using eq. (39) should be regarded as a rough estimate of
the probability of having the yrast state in the correspond-
ing HFB wave function and statistical uncertainties are ex-
pected to be large and eq. (39) probably underestimates
actual values. The results are shown in table 3. As ex-

Table 4. Monte Carlo excitation energies and the experimen-
tal values.

State E� (MeV) Exp.

2+ 0.233 ± 0.134 0.081

4+ 0.730 ± 0.170 0.265

6+ 1.220 ± 0.126 0.545

8+ 1.841 ± 0.132 0.911

10+ 2.341 ± 0.125 1.350

12+ 2.593 ± 0.154 1.847

14+ 2.760 ± 0.132 2.389

16+ 3.207 ± 0.129 2.970

18+ 3.724 ± 0.129 –

pected from the above considerations these probabilities
are close to unity, especially at large angular momentum.

The excitation energies obtained with the Monte Carlo
method are larger than the experimental excitation ener-
gies (ref. [10]), as shown in table 4.

The discrepancy between the Monte Carlo excitation
energies and the experimental values is especially large
for the J = 8 and J = 10 states and it decreases at larger
angular momentum, showing a too strong backbending
behaviour, not seen experimentally. Moreover at low an-
gular momentum, the excitation energies are larger than a
factor of 3–2. This last feature is primarily due to the full
angular-momentum projection and it is enhanced in the
Monte Carlo calculation, since excitation energies evalu-
ated within the HFB approximation with Jz projection
only, give values in better agreement with the experimen-
tal ones. We cannot rule out that these discrepancies with
the experimental data have their origin in the restriction
to one major shell with the parameter values normally
used, rather than to the Hamiltonian itself. The analogy
of behaviour of the excitation energies as a function of
the angular momentum of the HFB approximation and
the Monte Carlo calculation, suggests a redetermination
of the Hamiltonian, using the HFB method, since the de-
termination of the Hamiltonian and of its parameters with
Monte Carlo methods is computationally expensive.

A final comment about the computational time. The
computational effort is mostly due to the evaluation of
the angular-momentum projected matrix elements for the
Hamiltonian of eq. (15) (for O = Ĥ). On a XP1800+ pro-
cessor each evaluation of a projected energy sample takes
about 2 hours, independent of the value of β. The com-
putational effort for the Jz projected energies is negligible
compared to the above. Roughly, depending on the value
of β, the generation of statistically decorrelated integra-
tion points takes about one half or less than the evaluation
of each angular-momentum projected energy sample. On
the same processor, the evaluation of each decorrelated
ratio of overlaps in eq. (39) takes about one hour.

In conclusion, we have presented a scheme that al-
lows the evaluation of the energies of the yrast states us-
ing Monte Carlo methods. This scheme makes full use,
and also allows to assess the validity, of the HFB wave
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functions. The scheme seems to require relatively small
values of the inverse temperature. The method discussed
in this work bypasses entirely the basic difficulty of the
standard shell model method, which is inapplicable in this
mass region because of the prohibitively large dimension-
ality of the Hilbert space. Moreover this method allows
one to treat excited states explicitly rather than as a sta-
tistical average.

Appendix A.

In order to evaluate the matrix elements for one particle
species O1(M̂) of eq. (17), we shall use the algebra of
quadratic forms in the creation and annihilation operators
of ref. [11]. The method consists in the following properties
(eqs. (A.1)-(A.9) below) of exponentials of quadratic forms
in the creation and destruction operators of the type

Ŵ = exp
[
1
2
(a†a)

(
R11 R12

R21 R22

) (
a
a†

)]
(A.1)

with the restriction of R12 and R21 to be skew-symmetric
matrices and R22 = −R̃11. The dimensionality of the ma-
trices Rij equals the dimensionality of the single-particle
space Ns. Operators as in eq. (A.1) satisfy a group prop-
erty, that is, the product of any two operators of this form
is an operator of the same form and they are identified
by the following associated matrix (which we denote with
the same symbol without the caret), written in terms of
Ns ×Ns submatrices,

W ≡
(
W11 W12

W21 W22

)
= exp

[(
R11 R12

R21 R22

)]
. (A.2)

Thus, if Ŵ3 = Ŵ2Ŵ1 then W3 = W2W1. From eq. (A.2)
the following properties can be derived (ref. [11]). Pro-
vided |W22| �= 0, any operator Ŵ can be written as a
product of the form

Ŵ = τ̂cτ̂0τ̂d (A.3)

with

τ̂c = e
1
2a

†Ca†
, τc =

(
1 C
0 1

)
,

τ̂0 = exp
[
1
2
(a†a)

(
t 0
0 −t̃

)(
a
a†

)]
,

(A.4)

τ0 =
(
et 0
0 e−t̃

)
=

(
W̃−1

22 0
0 W22

)
,

τ̂d = e
1
2aDa, τd =

(
1 0
D 0

)

with the matrices D, t and C given by

D =W−1
22 W21, C =W12W

−1
22 , e−t̃ =W22 . (A.5)

The matrices C and D are skew-symmetric. Moreover, the
column vector of the destruction and creation operators(
a
a†

)
satisfies the relation

Ŵ−1

(
a
a†

)
Ŵ =W

(
a
a†

)
. (A.6)

The particle vacuum matrix elements of Ŵ are given
by

〈0|Ŵ |0〉 = |W22|1/2 . (A.7)

This last expression leaves the sign undetermined. The
inverse of the representive matrix W satisfies the relation

W−1 =
(
0 1
1 0

)
W̃

(
0 1
1 0

)
(A.8)

which gives the following relation for W11 in terms of
W22, C and D:

W11 = W̃−1
22 +W12D . (A.9)

In order to proceed, let us also define exponentials of par-
ticle number operators P̂ (z) as

eαN̂ ≡ zNs/2P̂ (z) = zNs/2exp
[
αp
2
(a†a)

(
1 0
0 −1

)(
a
a†

)]
(A.10)

with z = eα. To obtain expressions for the particle num-
ber projected matrix elements of eq. (17) for one type of
particles, we consider quantities like

O1(M, zp, zq) = (zpzq)Ns/2〈0|V̂ †P̂ (zp)R̂M̂Ŵ P̂ (zq)V̂ |0〉
(A.11)

which are functions of the fugacities zp,q = eαp,q and M̂
is a polynomial of the creation and destruction operators.
The operator V̂ in eq. (A.11) is the one that connects the
vacuum to the HFB state in eq. (2) and its associated
matrix is

V =
(
1 X
0 1

)
. (A.12)

We now evaluate eq. (A.11). Let us define the operator

Ŵ ′ = Ŵ P̂ (zq)V̂ , (A.13)

then the group property gives

W ′ =

(
zqW11 zqW11X + 1

zq
W12

zqW21 zqW21X + 1
zq
W22

)
. (A.14)

The decomposition theorem applied to Ŵ ′ gives

Ŵ ′|0〉 = 〈0|Ŵ ′|0〉τ ′c|0〉 (A.15)

with τ ′c of the type as in eq. (A.5) having as associated
matrix

τ ′c =
(
1 C ′
0 1

)
. (A.16)
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From eqs. (A.5), (A.14) and (A.9), one obtains the follow-
ing expression for C ′:

C ′ = C + z2qW̃
−1
22 X(1 + z2qDX)−1W−1

22 ; (A.17)

moreover eqs. (A.7), (A.14) and eq. (A.15) give

zNs/2
q Ŵ ′|0〉 = |W22|1/2|1 + z2qDX|1/2τ̂ ′c|0〉 . (A.18)

If we denote the associated matrix of the rotation operator
as

R =
(
r 0
0 r̃−1

)
, (A.19)

where r is the collection of the Wigner D-matrices in the
single-particle space, and define the operator product

Ŵ ′′ = V̂ †P̂ (zp)R̂ (A.20)

which has as associated matrix

W ′′ =
(

zpr 0
−zpX�r 1

zp
r̃−1

)
, (A.21)

then the decomposition theorem (eqs. (A.5), (A.5)) gives

zNs/2
p 〈0|Ŵ ′′ = 〈0|τ̂ ′′d (A.22)

with τ ′′ given by (cf. eq. (A.5))

τ ′′d =
(

1 0
D′′ 0

)
, D′′ = −z2p r̃X�r. (A.23)

Combining eqs. (A.13)-(A.23) we obtain

O1(M̂, zp, zq) = |W22|1/2|(1 + z2qDX)|1/2〈0|τ̂ ′′d M̂ τ̂ ′c|0〉
(A.24)

We shall consider the cases where M̂ = 1, M̂ = a†iaj and
M̂ = a†ia

†
jaras.

For M̂ = 1, using the group property and eq. (A.7),
and eqs. (A.17) and (A.23) for the associated matrices of
τ̂ ′′d and τ̂ ′c, we obtain

O1(M̂ = 1, zp, zq) = |W22|1/2|(1+z2qDX)|1/2|1+D′′C ′|1/2.
(A.25)

For the case where M̂ = a†iaj using eq. (A.6) we obtain,
after exchanging aj with τ̂ ′c,

O1(M̂ = a†iaj , zp, zq) = O1(M̂ = 1, zp, zq)ρji (A.26)

with the matrix ρ given by

ρ = 1− (1 + C ′D′′)−1 . (A.27)

Finally for the case where M̂ = a†ia
†
jaras, again using

eq. (A.6) in order to exchange the destruction operators
with τ̂ ′c, we obtain

O1(M̂ = a†ia
†
jaras, zp, zq) = O1(M̂ = 1, zp, zq)

×[D′′′
jiC

′′
sr + ρsiρrj − ρriρsj ] (A.28)

and the matrices D′′′ and C ′′′ are given by

D′′′ = D′′(1 + C ′D′′)−1, C ′′ = (1 + C ′D′′)−1C ′ .
(A.29)

From these equations the formulas in sect. 3 immediately
follow. The matrixW associated to the propagator Ŵ , can
be evaluated by using the group property of the operators
Ŵm of eq. (9) and eq. (A.2) to construct the representa-
tive matrices for each Ŵm of eq. (8). With the substitution
V̂ † → V̂

′† one can obtain formulas for off-diagonal matrix
elements, simply by replacing X� with X

′� (but not X
with X ′) everywhere in the results. Although not used in
this work, using this method one can obtain compact ex-
pressions in the case M̂ in eq. (A.11) is replaced with ÛM̂ ,
where Û is another operator of the form given by eq. (A.1).
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