Skip to main content
Log in

Evaporation residue cross-sections as a probe for nuclear dissipation in the fission channel of a hot rotating nucleus

  • OriginalPaper
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

Evaporation residue cross-sections are calculated in a dynamical description of nuclear fission in the framework of the Langevin equation coupled with statistical evaporation of light particles. A theoretical model of one-body nuclear friction which was developed earlier, namely the chaos-weighted wall formula, is used in this calculation for the 224Th nucleus. The evaporation residue cross-section is found to be very sensitive to the choice of nuclear friction. The present results indicate that the chaotic nature of the single-particle dynamics within the nuclear volume may provide an explanation for the strong shape dependence of nuclear friction which is usually required to fit experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Bohr, J.A. Wheeler, Phys. Rev. 56, 426 (1939).

    Article  MATH  Google Scholar 

  2. M. Thoennessen, G.F. Bertsch, Phys. Rev. Lett. 71, 4303 (1993).

    Article  Google Scholar 

  3. H.A. Kramers, Physica (Amsterdam) 4, 284 (1940).

    Google Scholar 

  4. Y. Abe, S. Ayik, P.-G. Reinhard, E. Suraud, Phys. Rep. 275, 49 (1996).

    Article  MathSciNet  Google Scholar 

  5. P. Fröbrich, I.I. Gontchar, Phys. Rep. 292, 131 (1998).

    Article  Google Scholar 

  6. D. Fabris, G. Viesti, E. Fioretto, M. Cinausero, N. Gelli, K. Hagel, F. Lucarelli, J.B. Natowitz, G. Nebbia, G. Prete, R. Wada, Phys. Rev. Lett. 73, 2676 (1994).

    Article  Google Scholar 

  7. B.B. Back, D.J. Blumenthal, C.N. Davids, D.J. Henderson, R. Hermann, D.J. Hofman, C.L. Jiang, H.T. Pentilä, A.H. Wuosmaa, Phys. Rev. C 60, 044602-1 (1999).

    Article  Google Scholar 

  8. I. Diószegi, N.P. Shaw, I. Mazumdar, A. Hazikoutelis, P. Paul, Phys. Rev. C 61, 024613-1 (2000).

    Article  Google Scholar 

  9. P. Fröbrich, I.I. Gontchar, N.D. Mavlitov, Nucl. Phys. A 556, 281 (1993).

    Article  Google Scholar 

  10. J. Blocki, Y. Boneh, J.R. Nix, J. Randrup, M. Robel, A.J. Sierk, W.J. Swiatecki, Ann. Phys. (N.Y.) 113, 330 (1978).

    Google Scholar 

  11. S. Pal, T. Mukhopadhyay, Phys. Rev. C 54, 1333 (1996).

    Article  Google Scholar 

  12. Gargi Chaudhuri, S. Pal, Phys. Rev. C 65, 054612 (2002).

    Article  Google Scholar 

  13. H. Hofmann, F.A. Ivanyuk, C. Rummel, S. Yamaji, Phys. Rev. C 64, 054316 (2001).

    Article  Google Scholar 

  14. J. Blocki, F. Brut, T. Srokowski, W.J. Swiatecki, Nucl. Phys. A 545, 511c (1992).

    Article  Google Scholar 

  15. H. Rossner, D.J. Hinde, J.R. Leigh, J.P. Lestone, J.O. Newton, J.X. Wei, S. Elfstrom, Phys. Rev. C 45, 719 (1992).

    Article  Google Scholar 

  16. C.R. Morton, D.J. Hinde, J.R. Leigh, J.P. Lestone, M. Dasgupta, J.C. Mein, J.O. Newton, H. Timmers, Phys. Rev. C 52, 243 (1995).

    Article  Google Scholar 

  17. K.-T. Brinkmann, A.L. Caraley, B.J. Fineman, N. Gan, J. Velkovska, R.L. McGrath, Phys. Rev. C 50, 309 (1994).

    Article  Google Scholar 

  18. M. Brack, J. Damgard, A.S. Jensen, H.C. Pauli, V.M. Strutinsky, C.Y. Wong, Rev. Mod. Phys. 44, 320 (1972).

    Article  Google Scholar 

  19. A.J. Sierk, Phys. Rev. C 33, 2039 (1986).

    Article  Google Scholar 

  20. T. Wada, Y. Abe, N. Carjan, Phys. Rev. Lett. 70, 3538 (1993).

    Article  Google Scholar 

  21. K.T.R. Davies, A.J. Sierk, J.R. Nix, Phys. Rev. C 13, 2385 (1976).

    Article  Google Scholar 

  22. A.J. Sierk, J.R. Nix, Phys. Rev. C 21, 982 (1980).

    Article  Google Scholar 

  23. A.V. Ignatyuk, G.N. Smirenkin, A.S. Tischin, Yad. Fiz. 21, 485 (1975) (Sov. J. Nucl. Phys. 21, 255 (1975)).

    Google Scholar 

  24. R. Balian, C. Bloch, Ann. Phys. (N.Y.) 60, 401 (1970).

    MATH  Google Scholar 

  25. N.D. Mavlitov, P. Fröbrich, I.I. Gonchar, Z. Phys. A 342, 195 (1992).

    Google Scholar 

  26. Gargi Chaudhuri, S. Pal, Phys. Rev. C 63, 064603 (2001).

    Article  Google Scholar 

  27. T. Wada, N. Carjan, Y. Abe, Nucl. Phys. A 538, 283c (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gargi Chaudhuri.

Additional information

Communicated by W. Henning

Received: 7 March 2003, Revised: 30 April 2003, Published online: 30 September 2003

PACS:

05.40.Jc Brownian motion - 24.60.Lz Chaos in nuclear systems - 25.70.Gh Compound nucleus - 25.70.Jj Fusion and fusion-fission reactions

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhuri, G., Pal, S. Evaporation residue cross-sections as a probe for nuclear dissipation in the fission channel of a hot rotating nucleus. Eur. Phys. J. A 18, 9–15 (2003). https://doi.org/10.1140/epja/i2003-10038-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2003-10038-x

Keywords

Navigation