Skip to main content

Advertisement

Log in

On the chiral phase transition in the linear sigma model

  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

The Cornwall-Jackiw-Tomboulis (CJT) effective action for composite operators at finite temperature is used to investigate the chiral phase transition within the framework of the linear sigma model as the low-energy effective model of quantum chromodynamics (QCD). A new renormalization prescription for the CJT effective action in the Hartree-Fock (HF) approximation is proposed. A numerical study, which incorporates both thermal and quantum effect, shows that in this approximation the phase transition is of first order. However, taking into account the higher-loop diagrams contribution the order of phase transition is unchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.E. Brahm, S.D.H. Hsu, Report No. CALT-68-1705/HUTP-91-A063, 1991, unpublished.

  2. See, for instance, J. Wambach, in Proceedings of Quark Matter 97, Nucl. Phys. A 638, 171c (1991).

    Google Scholar 

  3. See, for instance, K. Rajagopal, in Quark-Gluon Plasma 2, edited by R. Hwa (World Scientific, Singapore, 1995) p. 484.

  4. See, for instance, Proceedings of Lattice 96, Nucl. Phys. B (Proc. Suppl.) 53, 1 (1997).

    Google Scholar 

  5. L. Riccati, M. Masera, E. Vercellin (Editors), Quark Matter ‘99, Proceedings of the 14th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions, Turin, Italy, May 10-15, 1999, Nucl. Phys. A 661 (1999).

  6. D.A. Kirzhnits, A.D. Linde, Phys. Lett. B 42, 471 (1972).

    Article  Google Scholar 

  7. S. Weinberg, Phys. Rev. D 9, 3357 (1974).

    Article  Google Scholar 

  8. L. Dolan, R. Jackiw, Phys. Rev. D 9, 3320 (1974).

    Article  Google Scholar 

  9. J.M. Cornwall, R. Jackiw, E. Tomboulis, Phys. Rev. D 15, 2428 (1974).

    Article  Google Scholar 

  10. G. Amelino-Camelia, So-Young Pi, Phys. Rev. D 47, 2356 (1992).

    Article  Google Scholar 

  11. P. Castorina, M. Consoli, D. Zappala, Phys. Lett. B 201, 90 (1988).

    Article  Google Scholar 

  12. C.G. Boyd, D.E. Brahm, S.D. Hsu, Phys. Rev. D 48, 4963 (1993).

    Article  Google Scholar 

  13. M. Quiros, hep-ph/9304284.

  14. G. Baym, G. Grinstein, Phys. Rev. D 15, 2897 (1977).

    Article  Google Scholar 

  15. G. Amelino-Camelia, Phys. Lett. B 407, 268 (1997), hep-ph/9702403.

    Article  Google Scholar 

  16. J.T. Lenaghan, D.H. Rischke, J. Phys. G 26, 431 (2000), nucl-th/9901049.

    Article  Google Scholar 

  17. Heni-Seol Roh, T. Matsui, Eur. Phys. J. A 1, 205 (1998), nucl-th/9611050.

    Article  Google Scholar 

  18. N. Petropoulos, J. Phys. G 25, 2225 (1999), hep-ph/9807331.

    Article  Google Scholar 

  19. Y. Nemoto, K. Naito, M. Oka, Eur. Phys. J. A 9, 245 (2000).

    Article  Google Scholar 

  20. N. Bilic, H. Nicolic, Eur. Phys. J. C 6, 515 (1999).

    Google Scholar 

  21. O. Eboli, R. Jackiw, S-Y. Pi, Phys. Rev. D 37, 3357 (1988).

    Google Scholar 

  22. See, for instance, J.I. Kapusta, Finite-Temperature Field Theory (Cambridge University Press, 1989).

  23. P.M. Stevenson, Phys. Rev. D 32, 1389 (1985) and references therein.

    Article  Google Scholar 

  24. K. Rajagopal, F. Wilczek, Nucl. Phys. B 399, 395 (1993); T. Umekawa, K. Naito, M. Oka, hep-ph/9905502.

    Article  Google Scholar 

  25. K. Ogure, S. Sato, Phys. Rev. D 58, 85010 (1998).

    Article  Google Scholar 

  26. P. Arnold, O. Espinosa, Phys. Rev. D 47, 3546 (1993).

    Article  Google Scholar 

  27. M. Consolo, P.M. Stevenson, Int. J. Mod. Phys. A 15, 133 (2000), hep-ph/9905427.

    Article  Google Scholar 

  28. M. Bordag, V. Skalozub, J. Phys. A 34, 461 (2001), hep-th/0006089.

    Article  MathSciNet  MATH  Google Scholar 

  29. S. Coleman, R. Jackiw, H.D. Politzer, Phys. Rev. D 10, 2491 (1974).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Huu Phat.

Additional information

Communicated by V. Vento

Received: 15 November 2002, Revised: 15 September 2003, Published online: 20 January 2004

PACS:

11.10.Wx Finite-temperature field theory - 11.10.Gh Renormalization - 11.30.Rd Chiral symmetries - 05.70.Fh Phase transitions: general studies

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phat, T.H., Anh, N.T. & Hoa, L.V. On the chiral phase transition in the linear sigma model. Eur. Phys. J. A 19, 359–365 (2004). https://doi.org/10.1140/epja/i2002-10309-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2002-10309-0

Keywords

Navigation