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Abstract. The issue of dynamic contributions to the macroscopic stress tensor has been of high interest in
the field of bio-inspired active systems over the last few years. Of particular interest is a direct coupling
(“active term”) of the stress tensor with the order parameter, the latter describing orientational order
induced by active processes. Here we analyze more generally possible reversible and irreversible dynamic
contributions to the stress tensor for various passive and active macroscopic systems. This includes systems
with tetrahedral/octupolar order, polar and non-polar (chiral) nematic and smectic liquid crystals, as well
as active fluids with a dynamic preferred (polar or non-polar) direction. We show that it cannot a priori be
seen, neither from the symmetry properties of the macroscopic variables involved, nor from the structure
of the cross-coupling contributions to the stress tensor, whether the system studied is active or passive.
Rather, that depends on whether the variables that give rise to those cross-couplings in the stress tensor
are driven or not. We demonstrate that several simplified descriptions of active systems in the literature
that neglect the necessary counter term to the active term violate linear irreversible thermodynamics and
lead to an unphysical contribution to the entropy production.

1 Introduction

The study of the collective behavior in active media cov-
ers a large range of length and time scales. Systems of in-
terest include, listed with increasing characteristic length
scale: biological motors [1–5], pattern formation in bac-
terial growth phenomena [6–15] as well as schools of fish
and flocks of birds [16–19]. We will use the term active to
characterize systems for which the unit cells (motors, bac-
teria, fish, locusts and birds) are driven out of equilibrium
internally or individually, typically by chemical reactions.
This behavior must be contrasted to systems which are
driven out of equilibrium by externally applied fields such
as a temperature gradient in thermal convection or the
pump field in a laser. However, for the purpose of this
paper, there is no fundamental difference between driven
systems and active ones, since what matters here is that
both are driven systems in contrast to passive systems.

Throughout the present study we focus on the struc-
ture of the macroscopic stress tensor and its reversible
dynamic as well as dissipative dynamic coupling terms to
other collective and macroscopic variables. The stress ten-
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sor is often the quantity where active processes show up,
in particular, the “active term” as it is called in the liter-
ature of active systems. We will show that this term and
other couplings to the stress tensor exist in driven/active
systems as well as in passive systems.

In a simple fluid the macroscopic stress tensor has
three contributions: the isotropic enthalpy, (p + f)δij , in-
volving the pressure, p, and the energy density, f , the
momentum density transport, ρvivj , with ρ the density
and vi the velocity, and the viscous stress [20–22]. The
former two are reversible and have no phenomenological
parameters associated with it, while the viscous part of
the stress tensor in a simple fluid is proportional to the
symmetrized velocity gradients, ∼ Aij = 1

2 (∇ivj + ∇jvi),
and is characterized by two material parameters, shear
and bulk viscosity.

Here we want to study reversible and irreversible con-
tributions to the stress tensor as the symmetry is re-
duced compared to that of a simple fluid. In particular
we study the coupling terms of the stress tensor to macro-
scopic variables associated with broken continuous sym-
metries [21–23].

For reversible contributions to the stress tensor the
existence of one (or more) preferred direction(s) emerges
as a necessary condition. Complex fluids and condensed
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systems of that nature include (passive) nematic, smectic
and columnar liquid crystals as well as gels and conven-
tional solids of sufficiently low symmetry. Systems that
are driven by external fields (e.g. electric, magnetic, tem-
perature and concentration gradients) also show preferred
directions. Active systems often have a preferred (polar or
non-polar) direction induced by the active processes. All
of them show stress tensor couplings with scalar variables
of the kind that is called “active term” in the literature.

To obtain reversible contributions to the stress ten-
sor that couple to gradient fields (e.g. of temperature,
concentration, or electric potential) in the framework of
linear irreversible thermodynamics, broken parity is iden-
tified as an additional key ingredient. This includes chi-
ral systems and those with tetrahedral (octupolar) order.
Another type of vector coupling to the stress tensor is
provided by relative rotations in anisotropic gels and elas-
tomers.

Symmetric second-rank order parameter tensors also
couple reversibly to the stress tensor and include the ap-
propriate couplings of the scalar variables that denote the
degree of order. There are somewhat more exotic stress
tensor couplings to non-symmetric tensor fields (in su-
perfluid 3He-A and 3He-A1) and a kind of self-coupling
between stress and flow (in axial systems lacking time re-
versal symmetry) resembling the form of Newtonian vis-
cosity, but being reversible. Here we also mention the stan-
dard cross-coupling to elastic stresses and its counter part
in the dynamic displacement equation, which are (both)
fixed by the broken translational symmetry and do not
carry a phenomenological material parameter.

As necessary condition for the occurrence of additional
dissipative contributions we identify the existence of (at
least) one preferred direction, which is odd under time re-
versal. This includes superfluid 3He-A and 3He-A1, as well
as uniaxial magnetic gels, where in both cases the break-
ing of time reversal invariance is intrinsic. Systems that
are driven by an external magnetic field can also show
such dissipative contributions. Active systems, with a po-
lar or axial dynamic preferred direction (due to the motion
of active entities), also belong to this class of broken time
reversal symmetry. Active systems that are described by
a nematic director or by a polarization do not have such
dissipative contributions.

The paper is organized as follows. In sect. 2 we first
discuss general properties of reversible dynamic contribu-
tions to the stress tensor using the well-known flow align-
ment feature in nematic liquid crystals as an example. In
particular, we discuss how the zero-entropy production re-
quirement for reversible processes is implemented and that
any entropy production has to be provided by dissipative
couplings, in passive as well as in driven/active systems.
Then, we give many examples for reversible stress tensor
couplings to scalar, vector, and tensor variables. We show
that such couplings occur, irrespective of whether the sys-
tems are passive or driven/active. In sect. 3 we analyze
critically some popular simplified approaches that use dy-
namic contributions to the stress tensor, but neglect the
counter terms necessary within the framework of linear ir-

reversible thermodynamics. We show that this leads to the
unphysical situation that reversible effects change the en-
tropy, either increasing or decreasing it, depending on the
nature of the active entities involved. In sect. 4 we outline
a bridge to systems driven very far from equilibrium. We
conclude with a brief summary. Dissipative contributions
to the stress tensor are summarized in appendix A.

2 Reversible dynamic contributions to the
stress tensor

2.1 General aspects of reversible dynamic
contributions

General symmetry considerations already give some re-
strictions on the structure of reversible dynamic contri-
butions to the stress tensor σij . Since the velocity v and
the density of linear momentum g are odd under parity
and time reversal, reversible dynamic contributions to the
stress tensor σij must be even under parity and even under
time reversal, because of the momentum density conser-
vation (∂/∂t)gi + ∇jσij = 0. Obviously, dissipative con-
tributions to the stress tensor (cf. appendix A) have to be
odd under time reversal.

A second important restriction is the condition of zero-
entropy production for reversible contributions [21–23].
Thus, the phenomenological reversible currents (super-
script R) are most easily derived by writing down all
symmetry-allowed contributions to the various currents
and then make sure that the entropy production is zero.
As a well-known example we present this condition for a
uniaxial nematic liquid crystal with the director field ni

and the scalar order parameter (degree of ordering) S

R = −jσ,R
i ∇iT − je,R

i Ei − σR
ij∇jvi + Y R

i hi + ZR W = 0.
(1)

where we have used the notation of ref. [23]. Here jσ,R
i

and je,R
i are the reversible parts of the heat and electric

current density, respectively, while Y R
i and ZR are the

reversible parts of the quasi-currents in the balance equa-
tions (∂/∂t)ni + Yi = 0 and (∂/∂t)S + Z = 0 for the
director field and the order parameter. hi is the molecular
field of the director and W ≡ (∂/∂S)f the thermodynamic
conjugate to the order parameter with f the energy den-
sity. Reversible currents have the same time reversal be-
havior as the time derivative of the appropriate variable.
They are either even under spatial inversion, σR

ij , Z
R, or

polar vectors, je,R
i , jσ,R

i . The quasi-current Y R
i is trans-

verse to n and even under parity. Typically, zero-entropy
production is achieved by the cancellation of two mutual
cross-coupling terms.

For the stress tensor there is a reversible contribu-
tion [21,22,24–26] that takes the form

σR
ij = −1

2
λkjihk, (2)

with the counter term

Y R
i = −1

2
λijk∇jvk, (3)
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that ensures zero-entropy production. To guarantee the
proper transformation behavior under rigid rotations and
to satisfy the ni → −ni equivalence of nematic liquid crys-
tals, along with n2

i = 1, λijk has the form

λijk = (λ − 1)δ⊥ijnk + (λ + 1)δ⊥iknj , (4)

with δ⊥ij ≡ δij −ninj . It contains a phenomenological ma-
terial parameter λ that determines the flow alignment
angle when a uniaxial nematic is subjected to a shear
flow [21,25,27]. The contributions with the fixed prefactor
“1” reflect the rotational behavior of vectors and tensor.
Similarly, the advective part of the time derivatives (not
shown in eqs. (2) and (3)), due to Galilean invariance,
does not carry a phenomenological parameter.

Reversible flow alignment contributions occur in all
systems with broken rotational symmetry, like e.g. smectic
C [21], biaxial nematic liquid crystals [28,29] and nematic
liquid crystalline elastomers [30] as well as superfluid 3He-
A [31] and superfluid 3He-A1 [32]. This coupling also exists
for polar nematic liquid crystals [33], with a polarization
vector (instead of the director), and for active polar flu-
ids [34], where the preferred direction is a velocity. Natu-
rally, for systems with lower symmetry there are more flow
alignment parameters, e.g. three for orthorhombic biaxial
nematics.

It is obvious that the reversible contributions in
eqs. (2) and (3) cannot be derived from a phenomeno-
logical potential, since they are nilpotent in the entropy
production and not at all related to the free energy. They
exist for passive (ordinary) nematics (where hi = 0 and
∇jvi = 0 in equilibrium), as well as in nematics driven,
e.g. by an external simple shear flow (∇jv

ext
i = Ξ0δixδjy).

In the latter case the stationary non-equilibrium state has
a non-zero, constant ∇yvx ∼ Ξ0. In both cases the en-
tropy production comes from the dissipative parts of the
dynamics, 2R = (1/γ1)hihi + νijkl(∇jvi)(∇lvk), where γ1

is the rotational viscosity and νijkl is the viscosity ten-
sor. In the passive case R = 0 in equilibrium, while in the
driven case R ∼ Ξ2

0 is constant in the stationary state, in
accordance with basic thermodynamic principles.

This flow alignment example clearly shows that from
the structure of the cross-coupling terms between flow and
director rotations one cannot a priori discriminate passive
from active/driven systems. This is, however, not only true
for the specific variables used here, but also for other ex-
amples involving quite different types of variables, as will
be shown below.

2.2 Reversible dynamic contributions to the stress
tensor coupling to scalar quantities

Close to phase transitions the scalar order parameter,
which describes the degree of ordering, is typically a
macroscopic variable relaxing on a long but finite time
scale [23]. This concept has been introduced by Khalat-
nikov in the context of the λ-phase transition from nor-
mal fluid to superfluid in 4He [35] and is also the basis of
any time-dependent Ginzburg-Landau description. There

is a reversible dynamic coupling between the scalar order
parameter, S, and flow that reads using the notation of
ref. [23]

σR
ij = (β‖ninj + β⊥δ⊥ij)W (5)

and
ZR = (β‖ninj + β⊥δ⊥ij)Aij (6)

with the thermodynamic conjugate W and the quasi-
current Z defined after eq. (1), and the symmetrized
velocity gradient Aij . This term was suggested first for
the isotropic-superfluid 3He-A phase transition [36] and
later discussed for several phase transitions involving uni-
axial liquid crystalline phases, like the nematic-smectic
A [37] and the nematic-columnar [38] phase transitions.
In addition this coupling was used to characterize the
macroscopic behavior of nematic liquid crystalline elas-
tomers [30], polar nematics [33] as well as active polar flu-
ids [34]. These couplings describe e.g. flow-induced order.

Near the λ phase transition in 4He the appropriate
coupling is isotropic, and can be absorbed into the def-
inition of the pressure term, although the counter term
coupling to compressional flow, div v, is still there. On
the other hand, it is obvious that for all anisotropic sys-
tems the type of coupling of eqs. (5) and (6) exists for any
relaxing scalar variables. Typical examples are reaction-
diffusion systems [39–41], where one has usually several
relaxing scalar variables. In the long wavelength limit the
diffusive terms are irrelevant and one is left with n relax-
ation equations for the n concentrations of the reactants.
Therefore, in a uniaxially anisotropic fluid environment
there are 2n reversible dynamic coupling terms relating
flow with concentrations.

This type of coupling can also be found in active sys-
tems, e.g. active polar gels driven by concentration dy-
namics using a nematic-like description (eqs. (23) and (26)
of ref. [42])

σR
αβ = −(ζpαpβ + ζ̄δαβ + ζ ′pγpγδαβ)Δμ (7)

and
rR = (ζpαpβ + ζ̄δαβ + ζ ′pγpγδαβ)Aαβ , (8)

where Δμ is the chemical potential difference associated
with ATP and where pα denotes the polarization field.
Since the polarization is not normalized to one (in contrast
to the director) there are additional independent contribu-
tions ∼ ζ ′. Apart from that (and a different sign conven-
tion of the stress tensor) eqs. (7) and (8) are completely
equivalent to eqs. (5) and (6) discussed above.

Thus, we can again draw the conclusion that the “ac-
tive term”, eq. (7), occurs in passive systems as well. The
discrimination between active or passive systems depends
on whether W (or Δμ) is related to passive relaxational or
to driven processes. In the latter case the driving can be
provided by an external field or by the coupling to other,
internally driven variables. The structure of the reversible
coupling of the stress tensor to scalar macroscopic vari-
ables is the same in all cases.
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2.3 Reversible dynamic contributions to the stress
tensor coupling to vector quantities

There are two types of vectors that can couple reversibly
to the stress tensor in certain systems. First, we discuss
relative rotations in anisotropic gels/elastomers/polymers
and, second, gradients of temperature, concentration, elec-
tric potential etc. in systems either with tetrahedral (oc-
tupolar) order or with chirality.

Relative rotations as macroscopic variables are char-
acteristic of complex fluids with two subsystems, one of
which is typically a gel or an elastomer (or a polymer de-
scribed by a relaxing elasticity), the other shows a pre-
ferred direction. Their use has been pioneered for the
static description of nematic elastomers by de Gennes [43].
This concept was generalized into the nonlinear domain
and applied also to the dynamics of nematic liquid crys-
talline elastomers [30], uniaxial magnetic gels [44], and
active gels with an axial dynamic preferred direction [45].

The reversible contributions to the stress tensor take
the form (here we use the notation introduced for mag-
netic gels in ref. [44])

σR
ij = ξσR

ijkWk, (9)

with the counter term

ZR
i = −ξσR

kli Akl, (10)

where Zi is the quasi-current, and Wk is the thermody-
namic conjugate, connected to relative rotations. The ma-
terial tensor is of the form

ξσR
kli = ξσR

(
mkδ⊥li + mlδ

⊥
ki

)
, (11)

with mi denoting the preferred direction. In the case of
uniaxial magnetic gels this is the spontaneous magnetiza-
tion (for driven isotropic magnetic gels it is induced by
an external field), for nematic liquid crystal elastomers
it is the director, while for axial active gels it is the ax-
ial dynamic preferred direction. The latter is a vorticity-
like quantity [45] that does not vanish in the stationary
state, thus signaling a non-equilibrium situation. These
preferred directions have quite different symmetry prop-
erties for the different systems, nevertheless the form of
eqs. (9)-(11) is the same, since the variables involved also
have different symmetry properties, suitable to those of
the preferred directions. Again, passive and active systems
show the same type of coupling. These couplings describe
changes in the relative orientation of preferred direction
and the gel matrix due to flow and, vice versa, induced
stresses, due to changes in the relative orientation.

The appearance of tetrahedral (or octupolar) order
leads to a number of rather specific cross-coupling terms
of the reversible part of the stress tensor to gradients of
temperature, concentration, or electric scalar potential φ
(with the electric field Ei = −∇iφ) [46–48]. In the opti-
cally isotropic Td phase this reads

σR
jk = −Γ1TijkEi − Γ2Tijk∇iT − Γ3Tijk∇ic, (12)

with Tijk, the tetrahedral order parameter containing four
equivalent unit vectors of tetrahedral orientation. This is
the key quantity promoting these coupling terms, since
it is odd under parity (and completely symmetric in all
indices) [49]. The counter terms in the electric, heat, and
concentration current are, respectively,

je,R
i = Γ1TijkAjk, (13)

jσ,R
i = Γ2TijkAjk, (14)

jc,R
i = Γ3TijkAjk. (15)

They describe e.g. that a shear flow leads to electric, heat
and concentration currents perpendicular to the shear
plane [46], and, vice versa, gradients of temperature, con-
centration and electric potential lead to stresses in the
plane perpendicular to the gradients.

There are tetrahedral phases of lower symmetry that
show an additional nematic order. Depending on the ori-
entation of the director with respect to the tetrahedral
axes, they can be of D2d [47], D2 and S4 [48] symmetry.
In all these cases there are reversible coupling terms of
the same type as eqs. (12)-(15). However, there are twice
(D2d and S4) or three times (D2) as many independent
Γ coefficients as in the Td phase [47, 48]. Due to the low
symmetry of these phases the geometry of induced stresses
and currents is rather complicated, e.g. it involves hyper-
bolic flows and stresses, as well as oblique currents.

Similar reversible cross-couplings between flow and
gradients of the scalar variables as for tetrahedral phases
are present in a number of chiral systems including
cholesteric and chiral smectic liquid crystals, and active
chiral systems with an axial or polar dynamic preferred
direction. Using the notation of [45], where these terms
have been presented for the first time, we get

jσR
i = q0χ

σ
ijkAjk, (16)

jeR
i = q0χ

e
ijkAjk, (17)

jαR
i = q0χ

α
ijkAjk, (18)

σR
jk = −q0

(
χα

ijk∇iμα + χe
ijkEi + χσ

ijk∇iT
)
, (19)

with the third-rank material tensors

χξ
ijk = χξ(εikmwjwm + εijmwkwm). (20)

Here, wi is the axial dynamic preferred axis (vorticity
type), but it works the same way, if it is taken as the
polar dynamic preferred axis (velocity type), since there
is always an even number of wi factors. For the same rea-
son, eqs. (16)-(19) are applicable to cholesteric and chiral
tilted smectic liquid crystals, where wi stands for the di-
rector. Considering thin films of the latter systems, where
the helix is (almost) unwound and along the z-axis, an
external shear flow, whose shear plane (the plane spanned
by the velocity and the gradient direction) contains the
z-direction, induces (electric, heat and concentration) cur-
rents perpendicular to the shear plane. Vice versa, exter-
nal currents perpendicular to the z-axis that is, in the
x-y plane, induce stresses in the plane perpendicular to
the currents. Again, we notice that these reversible cross-
couplings exist for passive as well as active systems.
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2.4 Reversible dynamic contributions to the stress
tensor coupling to tensor quantities

Instead of using the scalar degree of ordering to describe
phase transitions (as in sect. 2.2) one can use the full ten-
sor (or vector) order parameter structure. For the uniaxial-
biaxial nematic phase transition this has been done by
Jacobsen and Swift [50] and further analyzed in ref. [51].
For the isotropic-uniaxial phase transition the analogous
analysis has been given in ref. [52]. In the context of the
uniaxial-biaxial phase transition one denotes by ni the di-
rector of the uniaxial phase, while the directors li and
mi, which are used to complete the orthonormal triad,
are used to characterize biaxial order. Using the two-
dimensional biaxial order parameter ξij = b(mimj − lilj),
its conjugate Skl, and the quasi-current Φkl, which are all
symmetric and traceless, there is, in the uniaxial phase, a
reversible cross-coupling of the stress tensor with biaxial
orientational fluctuations of the form

σR
ij = τijklSkl, (21)

ΦR
kl = τijklAij , (22)

where τijkl contains only one parameter

τijkl =
τ

2
(
δ⊥ikδ⊥jl + δ⊥il δ

⊥
jk − δ⊥ijδ

⊥
lk

)
, (23)

and where ΦR
kl is the reversible part of the quasi-current

associated with the biaxial order parameter ξij .
In ref. [53] the dynamics of the uniaxial order param-

eter tensor Qij = (S/2)(3ninj − δij) has been given and
compared to the dynamics of the director ni and the or-
dering strength, S, on both sides of the isotropic-uniaxial
phase transition. In the isotropic phase orientational fluc-
tuations couple reversibly to the stress tensor

σR
ij = −2λ1ψij , (24)

ΦR
ij = −2λ1A

tr
ij , (25)

where ψij = (∂f/∂Qij) (with f a Landau type free energy
density [54]) is the thermodynamic conjugate to Qij and
ΦR

ij is the reversible part of the quasi-current associated
with the uniaxial order parameter Qij . Atr

ij is the traceless
part of Aij , and λ1 a generalized flow alignment coefficient
that describes possible shear flow-induced nematic order
in the isotropic phase.

In the nematic phase one obtains in linear order [53]

σR
ij = −3

2

(
cλ
ijkl + cβ

ijkl

)
ψkl, (26)

ΦR
ij = −3

2

(
cλ
klij + cβ

klij

)
Akl, (27)

with

cλ
ijkl = λS2

eqnk

(
niδ

⊥
lj + njδ

⊥
li

)
, (28)

cβ
ijkl =

(
β⊥δ⊥ij + β‖ninj

)
(

nknl −
1
3
δkl

)
. (29)

In terms of the director and the degree of ordering,
eqs. (26) and (27) read

σR
ij =−1

2
λSeq

(
nih

⊥
j +njh

⊥
i

)
−

(
β⊥δ⊥ij +β‖ninj

)
W, (30)

Y R
i = −1

2
λSeq

(
nkδ⊥ij + njδ

⊥
ik

)
Ajk, (31)

ZR = −
(
β⊥δ⊥ij + β‖ninj

)
Aij , (32)

reflecting both the flow alignment type coupling, eq. (2),
and the degree of order coupling, eq. (5) with a slightly
different definition of the material parameters β and λ.

The contributions to the stress tensor in eqs. (24)
and (30) are of the type of the “active term”, where re-
versible stresses are induced by an order parameter (or its
fluctuations). However, in the present context of a thermo-
dynamic isotropic-uniaxial phase transition, these terms
describe passive, equilibrium processes. They only become
active or non-equilibrium, if the system (the phase transi-
tion) is driven. This can happen by applying an external
field, e.g. an externally imposed shear flow, which results
in a (flow-induced) nematic order even above the thermo-
dynamic phase transition [27]. In that case the stationary
state shows ψij �= 0 and a finite stress is obtained. Another
way of making these terms active would be the coupling
of the degree of ordering to a driven reaction-diffusion
system, leading to finite stresses, because of W �= 0 (cf.
eq. (30)). The latter case might be difficult to realize ex-
perimentally. The message, however, is that, from the form
of eq. (24) or (26), one cannot decide whether the pro-
cesses involved are passive or active.

It must be mentioned that the dynamics of the
isotropic-nematic phase transition using the full order pa-
rameter Qij has been studied first by de Gennes [54] (com-
pare also the discussion in his monograph [27]). How-
ever, in ref. [54] the coupling between the order param-
eter and the stress tensor was considered to be a dissi-
pative one, since the time derivative (∂/∂t)Qij was used
as a force. In refs. [27, 54] an entropy source was intro-
duced via T Ṡ = Q̇αβΦαβ +σ′

αβAαβ with the viscous stress
σ′

αβ and with Φαβ = − ∂F
∂Qαβ

, where F is the Landau
energy associated with the isotropic-nematic phase tran-
sition [54]. Correspondingly one obtains for the viscous
stress σ′

αβ = 2ηAαβ + 2μQ̇αβ with viscous coefficients η

and μ [27, 54].
There is also an example for a reversible cross-coupling

of the stress tensor involving non-symmetric tensors. In
uniaxial superfluids, e.g. superfluid 3He-A and -A1, the
spatial angular momentum is not conserved due to a
(small) spin-orbit coupling allowing for non-symmetric
stresses [32,55]

σR
ij = −λlkεkij div λ(s) (33)

and
Iϕ = λlkεkij∇ivj , (34)

with λ
(s)
i the conjugate to the superfluid velocity v

(s)
i ∼

∇iϕ, and Iϕ the quasi-current of the superfluid phase
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((∂/∂t)ϕ+Iϕ = 0). The preferred direction, usually called
l, is odd under time reversal. For isotropic superfluids the
latter does not exist and no such coupling is possible.

For active axial systems with a dynamic preferred di-
rection, wi, that is odd under time reversal but even under
spatial inversion there is a reversible self-coupling of flow
and stress of the form [45]

σR
ij = −νR

ijklAkl, (35)

with

νR
ijkl = νR

1 wp

(
εikpδ

⊥
jl + εjlpδ

⊥
ik + εilpδ

⊥
jk + εjkpδ

⊥
il

)

+νR
2 wp

(
εikpwjwl + εjlpwiwk

+εilpwjwk + εjkpwiwl

)
, (36)

that does not need any counter term, since the entropy
production ∼ νR

ijklAijAkl vanishes identically. This type
of contribution to the stress tensor was pioneered by M.
Liu [55] for superfluid 3He-A and also exists for super-
fluid 3He-A1 [32], both with li instead of wi. It also is
present in uniaxial magnetic systems [44] (including gels
and elastomers) with the magnetization as the preferred
direction, and in chiral active polar ones, when wi is re-
placed by q0fi [34] with q0 the chiral pseudoscalar and fi

the relative velocity.
Reversible contributions to the stress tensor that are

not related to phenomenological material-dependent pro-
cesses, but are dictated by symmetry, occur in systems
with spontaneously broken translational symmetry [21].
Therefore, they do not have a phenomenological coeffi-
cient. Denoting the displacement vector by ui, its thermo-
dynamic conjugate force by φij and its quasi-current by
Xi we find, e.g. for biaxial discotic columnar phases [28]

σR
ij = −(nink + mimk)φkj (37)

and
XR

i = −(ninj + mimj)vj . (38)

These contributions reflect the 2-dimensional broken
translational symmetry along the directions ni and mi.
They describe the correct Galilei transformation, requir-
ing, in the absence of any dissipative process, the time
derivative of a homogeneous displacement vector to be the
velocity of the system. Corresponding expressions exist for
layered fluid smectic phases and crystalline phases [21]. In
the latter case, the φij in eq. (37) is the elastic stress that
follows from the energy by derivation with respect to the
strain tensor. Nevertheless, the cross-couplings, eqs. (37)
and (38), cannot be derived from a potential, but are re-
quired to give zero-entropy production. These couplings
are responsible for transverse sound-like propagating ex-
citations in such systems.

3 Problems with common simplified
truncated approaches

In the previous section we have discussed selected ex-
amples of reversible coupling terms between the stress

tensor and other variables. We have seen that for every
such cross-coupling term there is a counter term ∼ Aij

in the current or quasi-current associated with the ther-
modynamic force the stress tensor is coupling to. This is
simply a consequence of linear irreversible thermodynam-
ics [21–23,56].

It has become popular recently to describe active hy-
drodynamic systems by a simplified procedure: Taking the
passive hydrodynamic equations (e.g. nematic or polar ne-
matic) an “active term” is added to the stress tensor that
drives the system into non-equilibrium. However, these are
typically reversible terms of the kind described in the pre-
ceding section that require counter terms. Often, however,
these counter terms are neglected, thus violating thermo-
dynamic principles. In addition, we will show that this
also leads to unphysical results.

In eq. (10) of ref. [57] there is an “active term”, a
contribution to the stress tensor of the form

σactive
ij = −ζQij , (39)

where Qij is the nematic order parameter tensor and ζ > 0
(ζ < 0) for extensile (contractile) active rods. Given the
behavior under time reversal this contribution must be re-
versible and not dissipative. Therefore one would expect a
counter term in the dynamic equation for Qij . Inspecting,
however, eqs. (5) and (6) of ref. [57] we notice that there
is no such counter term, thus violating linear irreversible
thermodynamics.

In addition, this term (without its counter term) leads
to an entropy production, eq. (1), of the form R = ζQijAij

that does not have a definite sign. As a result, entropy
might increase for extensile rods and therefore decrease
for contractile ones (or vice versa), which does not seem
to be physically reasonable. Using the full set of hydrody-
namic equations [42] for active nematics, it is clear that
the dissipative driving into non-equilibrium does not come
from the “active term”, but from the coupling to a chem-
ical energy-consuming subsystem of molecular motors or
equivalent biological entities, typically described by driven
reaction-diffusion equations.

A very similar reasoning applies to some truncated de-
scriptions of active polar nematic systems. Considering
eq. (9a) and eq. (4) of refs. [58] and [59], respectively, one
finds active stresses

σα
ij = αc

(
PiPj +

1
2
P 2δij

)
(40)

and

σa
ij = Wc

(
pipj −

1
2
p2δij

)
, (41)

respectively, where c is the concentration of active parti-
cles and Pi (or pi) is the polar nematic vector (the two
expressions differ by the definition of the pressure); the
prefactors (α and W ) can have both signs depending on
the type of active entities considered.

Again, these active contributions are reversible and
must not produce entropy. The necessary counter terms
cannot be found, neither in eqs. (2) to (4) of ref. [58], nor



Eur. Phys. J. E (2014) 37: 83 Page 7 of 10

in eqs. (1) or (2) of ref. [59]. Thus, we arrive at the same
conclusions as above, namely that these simplified trun-
cated approaches violate linear irreversible thermodynam-
ics and lead to unphysical entropy production expressions
that lack a definite sign. A hydrodynamic theory of active
polar nematics, using the velocity of the active entities as
order parameter [34] and including the necessary counter
terms, shows that dissipative driving (R ∼ F 2) is not due
to active terms of the form of eqs. (40) or (41), but due to
the existence of a finite relative velocity, F , between the
active and passive parts of the system. The latter is main-
tained by the metabolism/chemical energy conversion of
the active entities that lead to the polar ordering.

We close this section by pointing out that neglecting
reversible counter terms even in passive systems leads to
unphysical results. As an example we mention shear flow-
induced birefringence and shear wave attenuation close
to the (isotropic to nematic or uniaxial to biaxial ne-
matic) phase transitions [50, 51, 54] that are described
by reversible pairs of flow/orientation couplings of simi-
lar structure as the active terms discussed above. Neglect-
ing there the necessary counter terms would remove these
experimentally well-known physical effects.

4 Linear irreversible thermodynamics versus
systems driven far from equilibrium

Up to this point we have used the framework of linear irre-
versible thermodynamics. In this section we would like to
comment briefly on systems driven far from equilibrium so
that linear irreversible thermodynamics might no longer
be applicable. Linear irreversible thermodynamics is a
well-established field of statistical physics with applica-
tions to many static and dynamic phenomena [21–23,56].
Key features of linear irreversible thermodynamics in-
clude the existence of a generalized thermodynamic po-
tential and of a dissipation function, which is positive
semi-definite and controls all dissipative (heat-generating)
processes of the system as well as Onsager symmetry for
the dissipative transport coefficients.

This situation changes qualitatively as one goes to sys-
tems driven far from equilibrium. In general, a generalized
thermodynamic potential in the spirit of a Lyapunov func-
tional dictating the dynamic properties of a given system
is no longer known. As has already been pointed out a
few decades ago, however, there are special situations like
the onset of laser action [60–62] or the onset of thermal
convection in a simple fluid in the high Prandtl number
limit [63], for which one can derive a purely dissipative
generalized potential. In addition, it is also not clear how
to generalize the symmetry principle of Onsager to all pos-
sible non-equilibrium situations.

For almost all macroscopic systems dissipation plays
an important role when controlling its dynamics as well
as its stationary or oscillatory properties. In order to main-
tain a stationary state in situations far from equilibrium
one typically has a driving force such as an electric field,
or gradients in temperature and/or concentration of suf-

ficient strengths, which are balanced by dissipative pro-
cesses. Thus dissipative processes are of key importance
in maintaining driven systems in states far from equilib-
rium and can therefore never be discarded.

All these various aspects have been demonstrated for
stable spatially localized solutions in dissipative driven
systems (compare, for example, ref. [64] for a recent re-
view). The most studied prototype equation in this con-
nection is the complex cubic-quintic Ginzburg-Landau
equation [65, 66] as it arises as an envelope equation near
the onset of a weakly inverted bifurcation to traveling
waves. For this equation various types of stable spatially
localized solutions have been found [67–70]. To emphasize
that both, driving forces and dissipation, must maintain a
balance to render the spatially localized solutions in sys-
tems driven far from equilibrium to be stable, the term
dissipative solitons has been introduced [71] and is fre-
quently used today. The direct biological impact of these
concepts has been demonstrated recently [72], where it has
been shown that a coupled system of equations combin-
ing the complex cubic-quintic Ginzburg-Landau equation
with a simple reaction-diffusion system can lead to locally
stable solutions with intrinsic flows of matter and energy
thus paving the way to the elementary features of living
systems.

Nevertheless, we think that the use of near-equilibrium
tools, like linear irreversible thermodynamics and dissi-
pative potentials, is justified in the derivation of basic
macroscopic dynamic equations for active systems. First,
active systems often are not really far from equilibrium,
and second, even for systems manifestly far from equilib-
rium showing e.g. chaos, turbulence etc., the basic equa-
tions to describe them (e.g. the Navier-Stokes equations)
are derived close to equilibrium. Only if one switches to a
more coarse-grained description, like envelope and ampli-
tude equations, the near-equilibrium tools cannot be used
to derive such equations.

5 Concluding remarks

We have investigated the dynamic coupling terms of the
macroscopic stress tensor to variables associated with bro-
ken continuous symmetries. We have shown that such
terms are characteristic of a large variety of complex flu-
ids being passive or driven/active. In particular, the “ac-
tive term”, as it is called in the literature of active sys-
tems, can be present in many passive systems as well.
We emphasize that, apart from the structure of the cou-
pling terms to the stress tensor, one cannot see whether
the macroscopic system described is passive or active. We
have also compared the results for the dynamic contribu-
tions to the stress tensor, which are obtained within the
approach of dynamic preferred directions with those ob-
tained from other macroscopic models for active systems.
We also remark that macroscopic models that neglect the
necessary counter term to the “active term” violate lin-
ear irreversible thermodynamics and lead to unphysical
contributions to the dissipation.
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Appendix A. Dissipative dynamic
contributions to the stress tensor

As discussed in sect. 2, reversible contributions to the
stress tensor σij have to be even under time reversal, while
dissipative ones are odd. Both parts must be even under
parity. This observation leads to key input for the symme-
try requirements for a specific system to allow dissipative
cross-coupling terms between the density of linear momen-
tum and specific other macroscopic variables.

We start this analysis with coupling terms to gradients
of scalar variables that are even under parity and time
reversal, such as temperature T , concentration fields cα

or electric scalar potential φ (with the electric field Ei =
−∇iφ). In terms of the thermodynamic forces there are
coupling terms of the type

σD
ij = μσ

ijk∇kT + μα
ijk∇kμα + μe

ijkEk, (A.1)

with the relative chemical potential μα associated with
species α. Such coupling terms are only possible for sys-
tems that are odd under time reversal as well as under
parity.

The first systems studied macroscopically with these
properties were cholesteric liquid crystals in external mag-
netic fields [73]. We note that one expects such effects to
be small in this type of system, since the magnetic field
is only applied externally and the broken time reversal
symmetry is not an intrinsic property of the system itself.
Meanwhile, this type of effects has been studied for two ac-
tive systems that are intrinsically odd under time reversal
and parity, namely for systems that have an axial dynamic
preferred direction (and are chiral, in addition) [45] and
for those with a polar dynamic preferred direction [34].

Using the notation of ref. [45], the entropy production
due to eq. (A.1) is

R = q0Aij

(
ζσ
ijk∇kT + ζe

ijkEk + ζα
ijk∇kμα

)
, (A.2)

where the pseudoscalar q0 reflects chirality. Thermody-
namics requires R > 0 for dissipative processes, which
translates into various positivity requirements for (combi-
nations of) material parameters. The third-rank material
tensors take the form

ζijk = ζ1δ
⊥
ijwk + ζ2wiwjwk + ζ3

(
wiδ

⊥
jk + wjδ

⊥
ik

)
, (A.3)

with the axial dynamic preferred direction wi [45].

These dissipative couplings between stress and tem-
perature, concentration and electrical potential not only
lead to the stress tensor eq. (A.1) with μijk = q0ζijk, but
also to flow contributions to the heat, concentration, and
electrical currents. For example, in a simple shear flow the
dissipative heat current jσ,D

i

jσ,D
k =

∂R

∂∇kT
= q0ζ

σ
ijkAij (A.4)

acquires a non-vanishing contribution in the direction per-
pendicular to the shear plane.

For a system with a polar dynamic preferred direction
fi, which transforms like a velocity (odd under parity and
time reversal) [34] the analysis is similar to the one just
given above. In the polar case, however, no pseudoscalar
quantity q0 is needed to obtain the proper transformation
behavior for R and σD

ij . It should be noted that in the de-
scription of active systems that use a polarization (instead
of the dynamic preferred direction fi) no such dissipative
stress contribution occurs, since the polarization is even
under time reversal.

For macroscopic systems that are intrinsically odd un-
der time reversal and that are characterized by an axial
vector another class of coupling terms to the dissipative
part of the stress tensor exists. For example, for uniaxial
magnetic gels, with mi the preferred direction connected
to the intrinsic magnetization, one obtains [44]

R = ξσ
ijkAijWk + cJ

ijkAijh
M
k , (A.5)

where hM
k is the molecular field associated with the mag-

netization density Mi and Wk is the thermodynamic con-
jugate of relative rotations between the gel network and
the magnetization density. The material tensors ξσ

ijk and
cJ
ijk take the form

aijk = a (miεjkl + mjεikl) ml. (A.6)

To obtain the dissipative parts of the currents and
quasi-currents associated with eq. (A.5) we take the par-
tial derivatives with respect to the appropriate thermody-
namic forces

σD
ij = −

(
∂R

∂(∇jvi)

)

...

= −ξσ
ijkWk − cJ

ijkhM
k , (A.7)

ZD
i =

(
∂R

∂Wi

)

...

= ξσ
kliAkl, (A.8)

XD
i =

(
∂R

∂hM
i

)

...

= cJ
kliAkl. (A.9)

There are other macroscopic systems that show such
types of dissipative cross-couplings. In achiral systems
with an axial dynamic preferred direction these contri-
butions arise as well [45]. The type of coupling provided
by ∼ cJ

ijk has been elucidated first for superfluid 3He-
A [31] and superfluid 3He-A1 [32] about forty years ago.
In this case this coupling is possible because there also
exists a vector (usually called l̂i), which is odd under time
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reversal and characterizes the spontaneously arising pre-
ferred direction in space.

To conclude the section on dissipative cross-coupling
contributions to the stress tensor, we discuss, for super-
fluid 3He-A and superfluid 3He-A1, another type of cou-
pling, between normal flow and superflow, of the form

σD
ij = −ξij∇kλ

(s)
k (A.10)

and
JD

ϕ = −ξij∇jv
(n)
i , (A.11)

where λ
(s)
i is the thermodynamic conjugate of the super-

fluid velocity v
(s)
i = (h̄/2m)∇iϕ and Jϕ denotes the quasi-

current of the phase ϕ. The tensor ξij is of the uniaxial
form

ξij = ξ⊥(δij − l̂i l̂j) + ξ‖ l̂i l̂j (A.12)

generalizing the second viscosity of an isotropic super-
fluid [35,74,75] to a uniaxial superfluid [31,32,76].
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