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Abstract. Quantum scattering calculations are presented for the interaction of low energy positrons with
the uracil molecule, an important component of biological systems. The rotational elastic and inelastic
cross sections and vibrational inelastic cross sections are reported and compared with existing experiments,
indicating a general trend of the cross sections different from the experimental findings and in line with
what should be expected from the behavior of the total cross sections in similar polar targets. Some
specific considerations can be drawn on the reliability of existing experiments, as to their size vis-à-vis to
the computed integral cross sections over the same range of energies.

1 Introduction

The damaging effects on biological systems of ionizing ra-
diation has been known for a long time, as it is by now
an accepted fact that high-energy particles (α, β, γ and
possible atomic ions) are capable of ionizing cell compo-
nents along the track of radiation, thus leading to various
dissociation channels and to the formation of damaging
radical species [1,2]. One additional piece of information
from recent studies has also been the fact that about one
third of the damage actually comes from energy that is
transferred to the DNA cell structures, and to the nearby
molecules bound to them, while the remaining two thirds
of the destructive action comes from the secondary elec-
trons extracted by the primary radiation from the molec-
ular environment, thereby leading to single and double
strand breaks and to other lethal, mutagenic DNA and
RNA lesions caused by such secondary electrons [3,4].

The above findings on secondary electron effects have
triggered a great deal of studies, both experimentally and
theoretically, on the behavior of DNA and its components
under the exposure to low-energy electron beams, follow-
ing both the shear size of the relevant cross sections and
the ensuring fragmentation patterns as indications to final
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DNA irreversible damage [5–8]. With the same token, peo-
ple have also become interested in comparing such novel
findings with the corresponding behavior on biosystems
under the low-energy scattering of the electron’s antiparti-
cle, the positron, whose low-energy interactions with poly-
atomic molecules have also created a great deal of interest
in recent years (for a comprehensive discussion see the
recent Refs. [9,10]) since the positive projectile indeed in-
teracts with the electro-nuclear network of the molecular
targets essentially via the same fundamental forces. How-
ever the additional channels of positron annihilation and
positronium (Ps) formation also provide new and intrigu-
ing possibilities among the scattering channels (for some
theoretical work treating annihilation see e.g. [11–13] and
for some recent reviews see e.g. [14,15]).

In the present work we have therefore taken up one
of the most popular biological molecules that have been
studied with electron scattering experiments and theory,
the uracil molecule, and have examined the behavior of
its differential and integral cross sections by low-energy
scattering of a beam of positrons: for this initial study
we have included rotationally elastic and inelastic chan-
nels and vibrationally elastic channels. In current exper-
imental setups the sum of the cross sections for these
channels is measured, because due to the limited en-
ergy resolution these channels cannot be distinguished
form each other, see e.g. [16,17]. In this study the an-
nihilation, Ps-formation and ionization channels have not
been considered in our computational treatment. Experi-
mentally these channels can be distinguished very clearly

http://www.epj.org
http://dx.doi.org/10.1140/epjd/e2014-40796-0
http://www.springerlink.com


Page 2 of 9 Eur. Phys. J. D (2014) 68: 183

from rotationally elastic and inelastic channels and vibra-
tionally inelastic channels.

Furthermore Ps-formation and ionization are reactive
channels and are difficult to describe with the model
potential based approach used in this study. Gianturco
and Melissa have employed in earlier work an optical
model potential to describe the Ps-formation channel in
positron scattering from neutral atoms [18,19] and atomic
ions [20]. This method is however difficult to reliably be
included within our present approach, so that we have,
for the time being, disregarded its implementation for
polyatomic molecular targets. Another possibility is to in-
troduce a complex absorbing potential, which describes
both channels, Ps-formation and ionization, as done by
Baluja and Jain [21] and Reid and Wadehra [22,23]. One
disadvantage of this approach is that the channels for
Ps-formation and ionization cannot be distinguished and
that additional empirical parameters are introduced. Reid
and Wadehra [22,23] needed to introduce an empirical
quantity Δ, which they identify with the threshold en-
ergy for Ps-formation. This choice reproduces the sum
of Ps-formation and ionization cross sections near the
Ps-formation threshold, but decays too fast at higher ener-
gies, and therefore Chiari et al. [24] tried instead to use an
energy-dependent threshold parameter in order to correct
for this behavior. This corrects the high-energy shape of
the cross-section but destroys the non-empirical character
of the original approach.

The couplings between open channels, like
Ps-formation, electronic-excitation or ionization, usually
will give structure in the elastic cross section on either
side of each threshold for opening a new inelastic channel,
see e.g. Charlton and Humberston [9] for a detailed
discussion. The effects on the structure of the rotationally
and vibrationally elastic and inelastic cross sections can
be expected to be much smaller than the uncertainties
originating from other aspects of our model. Therefore
it should be a valid assumption to neglect the effects of
these channels onto the presented cross sections.

The threshold for positronium formation is given by
EPs = Eion − 6.8 eV [9]. Experiments (see e.g. Denifl
et al. [25]) and theory (see e.g. Wetmore el al. [26]) place
the vertical ionization energy at roughly Eion ≈ 9.5 eV,
which gives EPs ≈ 2.7 eV. Positron-electron annihilation
is possible at all collision energies. In the absence of res-
onances the annihilation channel is usually only weakly
coupled to the elastic and inelastic channels and often
treated uncoupled as an expectation value of the scat-
tering wave function (see e.g. Chap. 4.2 in Charlton and
Humberston [9] and in Humberston et al. [27]). We there-
fore also neglect the influence of annihilation on the pre-
sented cross sections.

The following section briefly reports on our theoreti-
cal and computational model, described in greater detail
elsewhere (see e.g. [28]), while Section 3 deals with our
present results. Section 4 finally summarizes our conclu-
sions, where a detailed comparison is also reported with
the few available experimental data on our title molecule.

2 Theoretical and computational methods

2.1 Scattering equations

In order to obtain the scattering cross sections for poly-
atomic molecules, we need to solve the Schrödinger equa-
tion of the total system

(H − E)Ψ = 0 (1)

at the total energy E, for the corresponding wavefunction
Ψ . Here H is the total Hamiltonian given by

H = Hmol + K + V, (2)

where Hmol, K and V represent the operators of the
molecular Hamiltonian, kinetic energy for the scattered
positron and the interaction potential between the inci-
dent positron and the target molecule, respectively. The
Hmol further consists, in general, of the rotational and vi-
brational parts

Hmol = Hrot + Hvib, (3)

whereby we exclude, at the collision energies considered,
electronic excitations, ionization and the Ps formation
channels.

The total wavefunction Ψ is described in the body-
fixed (BF) reference frame, in which the z axis is taken
along the direction of the main molecular axis and is ex-
panded around a single-centre (SCE) as

Ψ(r1 . . . rZ , rp|R) = Ψmol(r1 . . . rZ |R)ϕ(rp|R), (4)

where

ϕ(rp|R) =
∑

lπμh

r−1
p uπμ

lh (rp|R)Xπμ
hl (r̂p). (5)

In equation (4), ri represents the position vector of the
ith electron among the Z bound electrons in the target,
taken from the centre of mass. Ψmol is the electronic wave-
function for the molecular target at the nuclear geometry
R. The continuum function ϕ(rp|R) refers to the wave-
function of the scattered positron under the full action
of the field created by the molecular electrons and by
their response to the impinging positron as described in
reference [28]. Each uπμ

lh is the radial part of the wave-
function for the incident particle and the Xπμ

hl are the
symmetry-adapted angular basis functions (for more de-
tailed informations see e.g. [29]). The suffix π stands for
the irreducible representation (IR), μ distinguishes the
components of the basis, if its dimension is greater than
one and h does the same within the same set with angular
momentum quantum number l.

We can now assume that the target molecule can be
kept fixed during the collision, since the molecular rota-
tions and vibrations are often slower when compared with
the velocity of the impinging positrons considered in the
present study. This is called the fixed-nuclei (FN) approx-
imation [30] that ignores the molecular term of Hmol in
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equation (2) and fixes the values of all R at their equi-
librium locations in the target molecule. To solve the
Schrödinger equation in the FN approximation, we make
use of the body-fixed (BF) system rather than the space-
fixed (SF) frame of reference, because a formulation in
the former can be simpler, both conceptually and compu-
tationally. The two systems are related through a frame
transformation scheme given, for example, by Chang and
Fano [30].

After substituting equation (4) into (1) under the FN
approximation, we obtain a set of coupled differential
equations for ulv where, for simplicity, v represents (πμh)
collectively:

{
d2

dr2
p

− l(l + 1)
r2
p

+ k2

}
ulv(rp|R)

= 2
∑

l′v′
〈lv|V|l′v′〉ul′v′(rp|R) (6)

with

〈lv|V|l′v′〉 =
∫

dr̂pX
∗
lv(r̂p)V (rp|R)Xl′v′(r̂p). (7)

When solving equation (6) under the boundary condi-
tions that the asymptotic form of ulv is represented by a
sum containing outgoing spherical Bessel- and Neumann
functions we obtain the corresponding S-matrix elements,
Slv

l′v′ . The actual numerical procedure we have employed to
solve that equation is given in detail in references [31,32].

The integral cross section (ICS) for the elastic scatter-
ing in the BF frame is given by

σcc =
π

k2

∑

lv

∑

l′v′

∣∣T lv
l′v′

∣∣2 , (8)

where the index cc indicates the close-coupling approach.
The T-matrix is defined as a function of the S and

K-matrices,

T = 1 − S (9)

= 1 − (1 − iK) · (1 + iK)−1. (10)

The differential cross section diverges in the forward
direction in the presence of a molecular dipole mo-
ment, because of the long-range interaction between the
positron and the molecular dipole moment. This is par-
ticularly important for the present molecule, where the
permanent dipole value is fairly large and known to be
around 4 Debye [33–35]. This problem can be solved by
applying the following closure formula for the differential
cross section [36]:

dσ

dΩ
(Jτ → J ′

τ ′) =
dσB

rd

dΩ
(Jτ → J ′

τ ′)

+
∑

L

(
AL − AB

L

)
PL(cos θ), (11)

where Jτ and J ′
τ ′ denote the initial and final rotational

level, respectively. The first quantity on the right hand

side is the differential cross section for a rotating dipole
using the first Born approximation. The PL(cos θ) are
the Legendre functions. The coefficients AL are computed
from the K-matrices, which are obtained by solving the
close-coupling equations. The coefficients AB

L are com-
puted from the K-matrices using the first Born approxi-
mation for the dipole potential. Explicit formulas for AL

and AB
L are given in Gianturco and Jain [29]. The final

differential cross section is obtained by summation over
the the different initial and final rotational levels

dσrot

dΩ
=

∑

JτJ′τ ′
wJτ

dσ

dΩ
(Jτ → J ′

τ ′) , (12)

where wJτ is the relative occupation of the initial rota-
tional level Jτ . Here we are considering only the case with
initial rotational level Jτ = 00, corresponding to a tem-
perature of 0 K. In our previous study on pyrimidine [37]
we have shown that the cross section changes less than 5
percent by changing the temperature from 0 to 1000 K.
We define the partial differential cross section for the tran-
sition between the rotational levels J and J ′ by

dσrot
JJ′

dΩ
=

∑

ττ ′

dσ

dΩ
(Jτ → J ′

τ ′) , (13)

in which we sum over all initial and final sub-levels τ and
τ ′. In the following we use the notation dσelas

dΩ for the ro-
tationally elastic cross section, i.e.

dσelas

dΩ
=

dσ

dΩ
(00 → 00). (14)

It should be noted that the above sum dσrot
dΩ includes the

rotationally elastic cross section.
The integral cross section for the rotational transition

from the initial state Jτ to the final state J ′
τ ′ can be com-

puted in the SF frame as

σrot
(Jτ→J′

τ′ )
=

∫
dσ

dΩ
(Jτ → J ′

τ ′) dΩ. (15)

The integral cross section for the rotational transition be-
tween the two rotational states J and J ′ is given by

σrot
JJ′ =

∑

ττ ′

∫
dσ

dΩ
(Jτ → J ′

τ ′) dΩ (16)

=
∑

ττ ′
σrot

(Jτ→J′
τ′ )

, (17)

where again we sum over all initial and final sub-levels
τ and τ ′. The rotationally elastic integral cross section is
given by

σelas = σrot
(00→00)

. (18)

The sum of rotationally elastic and inelastic cross sections
is given by

σrot =
∑

JJ′
σrot

JJ′ . (19)
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For transitions from the ground state with J = 0 this
sum is already converged by including terms up to J ′ = 4.
Alternatively this cross section can be computed as

σclosure
rot = σB

rd + σcc − σB
fd, (20)

as discussed by Sanna and Gianturco [36]. Here σB
rd is

the integral cross section for a rotating dipole in the
Born approximation. σcc is the integral cross section ob-
tained by solving the close-coupling equations in the FN-
approximation and σB

fd is the integral cross section for a
fixed dipole. In our computations the two expressions σrot

and σclosure
rot coincide by more than 8 significant figures,

which is a good sign that all quantities are numerically
converged.

2.2 The DFT modelling of correlation and polarization

The interaction between the positron and the molecular
nuclei and electrons is specified by the total interaction
potential

Vtot(rp|R) = Vst(rp|R) + Vpcp(rp|R), (21)

which is the sum of the static potential Vst and the
correlation-polarization potential Vpcp. The static poten-
tial Vst is the exact electro-static interaction potential be-
tween the positron and the nuclei and electrons in the
molecule. The correlation-polarization potential is mod-
eled by the potential [32]

Vpcp(rp|R) =

{
Vcorr(rp|R) for rp ≤ rc

Vpol(rp|R) for rp > rc.
(22)

Here Vcorr and Vpol are the short-range and long-range
parts of the correlation-polarization potential. rc is the
outermost point, at which Vpol becomes larger than Vcorr.
Vcorr is based on the functional εe−p [ρ(re|R)] for the cor-
relation energy of one positron in an electron gas with
density ρ(re|R). Boronski and Nieminen [38] have derived
interpolation formulae for εe−p. Vcorr can be obtained from
εe−p by the functional derivative [32]

Vcorr(rp|R) =
δ

δρ

{
εe−p [ρ(rp|R)]

}
. (23)

The long-range part Vpol of the correlation-polarization
potential is given by

Vpol(rp|R) = − 1
2r6

p

∑

ij

xixjαij , (24)

where αij are the Cartesian elements of the polarizability
tensor, rp = |rp| =

√∑
i x2

i and xi, xj ∈ {x, y, z} are the
Cartesian coordinates of the positron.

2.3 Cross sections for vibrational excitation

We are further including inelastic effects by describing the
vibrationally inelastic cross section by the first Born dipole
approximation, see e.g. Lane [39] for more details. The
total inelastic cross section for vibrational excitation is
given by the sum

σvib =
∑

ν

σvib
ν . (25)

Each partial excitation cross section σvib
ν for the excitation

of the vibrational mode ν is expressed as [39]

σvib
ν =

8π

3k2
M2

ν ln
∣∣∣∣
k + k′

ν

k − k′
ν

∣∣∣∣, (26)

where we have used atomic units. The quantities

k =
√

2Escat and k′
ν =

√
2(Escat − Eν) (27)

are the momenta of the positron before and after the col-
lision, respectively. Escat is the collision energy of the im-
pinging particle, Eν is the energy for exciting the vibra-
tional mode ν and Mν is the value of the transition dipole
moment. The square of the transition dipole moment can
be computed from the intensity of the infrared absorption
by [40]

M2
ν =

Aν

16.192ων
, (28)

where Aν is the infrared absorbtion intensity, given in
km mol−1, and ων is the frequency of the mode given in
cm−1. Both quantities can be computed with many stan-
dard quantum chemistry packages as e.g. Gaussian [41].

Similarly the expression for the total differential cross
section (DCS) for vibrational excitation can be given by
the sum

dσvib

dΩ
=

∑

ν

dσvib
ν

dΩ
, (29)

where each mode contributes the partial DCS

dσvib
ν

dΩ
=

4k′
ν

3k

M2
ν

k2 + k′2
ν − 2kk′

ν cos θ
. (30)

Here θ is the scattering angle.

2.4 Computational details

The equilibrium geometry of the uracil molecule belongs
to the Cs symmetry. The molecular geometry and the
ground state molecular orbitals are generated with the
Gaussian 09 program package employing the Perdew-
Burke-Ernzerhof (PBE) density functional and the aug-
cc-pVTZ basis set [41]. The computed molecular dipole
moment at this level of theory is 4.34 Debye, which
compares well with the value of 4.38 Debye computed
by Pluta et al. [33] using the analytic response coupled
cluster singles doubles (CCSD) method and the aug-cc-
pVTZ basis set. Brown et al. [34] have derived a value
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Table 1. Vibrational frequencies ων and infrared absorp-
tion intensities Aν computed with the PBE density functional
and the aug-cc-pVTZ basis set using the program package
Gaussian [41].

Mode ν Symmetry ων

cm−1
Aν

km mol−1

1 A′′ 145.5549 1.7483
2 A′′ 165.4788 0.0214
3 A′ 371.9560 18.0256
4 A′′ 391.7149 19.9442
5 A′ 502.8385 19.3562
6 A′ 522.3072 6.3329
7 A′ 539.5588 3.6425
8 A′′ 569.6779 36.0947
9 A′′ 675.7517 63.1804
10 A′′ 710.9749 16.5865
11 A′′ 737.7973 29.8373
12 A′ 750.9808 2.7455
13 A′′ 797.4612 52.7301
14 A′ 935.1604 9.4012
15 A′′ 940.1599 0.1702
16 A′ 962.7717 6.1939
17 A′ 1058.2382 3.9031
18 A′ 1153.2323 88.0490
19 A′ 1191.8136 6.3770
20 A′ 1328.1998 20.6110
21 A′ 1354.3773 82.3527
22 A′ 1371.0682 15.2428
23 A′ 1451.3918 79.1906
24 A′ 1621.4944 51.7682
25 A′ 1706.3841 642.5709
26 A′ 1745.5493 570.7372
27 A′ 3127.0491 2.8009
28 A′ 3175.4055 1.1888
29 A′ 3505.5873 55.0670
30 A′ 3552.2516 92.3301

of 3.87 Debye from the microwave spectrum of uracil-
molecules embedded in expanded argon beams. They give
a 10 percent error for their value. Kulakowski et al. [35]
have measured 4.16 Debye for uracil in dioxane solutions.
Our computed rotational constants are A = 3.86 GHz,
B = 1.99 GHz and C = 1.31 GHz, which is in good
agreement with the microwave results of Brown et al. [34]:
3.88, 2.02 and 1.33 GHz. The diagonal elements of the
polarizability tensor, computed with the PBE-functional,
are αxx = 97.9 bohr3, αyy = 80.3 bohr3 and αzz =
42.4 bohr3. The off-diagonal element in the molecular
plane is αxy = 2.38 bohr3. This is in good agreement with
the CCSD results of Pluta et al. [33] (αxx = 96.6 bohr3,
αyy = 75.5 bohr3 and αzz = 42.2 bohr3). The computa-
tion of the vibrational frequencies and infrared absorption
intensities has been done at the same level of theory. The
values are given in Table 1.

The single-centre-expansions of the molecular electron
density and of the potential are done with an improved
version of the SCELib3.0 computational library [42], to
which we have added the correlation-polarization poten-
tial specific for modeling the interactions of the molecu-
lar electrons with slow positrons. The coupled scattering

Table 2. Computed partial integral cross sections. Energies
are given in eV and all cross section are given in 10−16 cm2.

Energy ν σrot
00 σrot

01 σrot
02 σrot

03 σrot
04

1.0 24.6 1132.2 18.8 16.2 19.5
1.5 18.7 779.3 10.9 10.8 13.8
2.0 16.4 597.4 7.9 8.0 10.5
2.5 15.0 485.6 6.6 6.4 8.3
3.0 14.0 410.3 6.0 5.3 6.9
3.5 13.2 355.6 5.7 4.5 6.0
4.5 12.0 281.4 5.4 3.6 4.9
5.0 11.6 255.0 5.3 3.3 4.6
6.0 10.8 215.3 5.1 3.0 4.3
8.0 9.7 164.9 4.5 2.5 4.0
10.0 9.1 133.5 3.9 2.3 3.8
12.0 8.7 113.0 3.4 2.0 3.6
14.0 8.5 98.4 2.9 1.8 3.4
16.0 8.3 86.5 2.5 1.6 3.2
18.0 8.1 77.3 2.2 1.5 3.0
20.0 7.9 70.7 1.9 1.4 2.8
25.0 7.3 57.8 1.4 1.3 2.4

equations are solved by Volterra integration, using a recent
implementation of the VOLSCAT program package [43].
More specifically the VOLSCAT suite of codes computes
the integral cross section in the BF-frame (denoted previ-
ously as σcc) and therefore generates the necessary body-
fixed K-matrices.

The body-fixed K-matrices are then processed by the
program package POLYDCS [36], that transforms the
body-fixed K-matrices into the space-fixed K-matrices
and further applies the Born correction, as outlined
by Sanna and Gianturco [36]. From the space-fixed
K-matrices obtained in this way we can further generate
the state-to-state rotationally elastic and inelastic differ-
ential and integral cross sections. During the frame trans-
formation step of the present calculations the rotational
eigenfunctions and eigenvalues for the asymmetric top are
in turn generated using the program ASYMTOP of Jain
and Thompson [44] with our computed rotational con-
stants. The convergence of scattering wavefunction with
respect to the size of the partial wave expansion is checked
carefully. The scattering wavefunction is expanded up to
Lmax = 40. The actual expansion of the potentials in these
calculations is done up to an angular momentum twice as
large as the one which we used for the scattering wave-
functions (i.e. 2 × Lmax).

3 Results and discussion

As mentioned in the introduction, the scattering of
positrons from molecular gases is a process involving a
somewhat more varied ensemble of the system’s responses
to this projectile in comparison with the same experiments
with an electron as a projectile.

One of the basic questions, for instance, is to be able
to verify through computational models what is the ex-
pected size of the elastic integral cross sections caused by
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Fig. 1. Comparison of partial integral cross sections. The thin
blue lines show the various contributions to the rotational elas-
tic (rotational 0–0, thin solid blue line) and inelastic cross sec-
tions (other thin blue lines). The sum of the all vibrational
inelastic cross sections is shown by the thick dashed red line.
The sum of rotational elastic and inelastic and vibrational in-
elastic cross sections is shown by the solid black line.

Table 3. Computed partial integral cross sections. Energies
are given in eV and all cross section are given in 10−16 cm2.

Energy ν σrot σvib σrot + σvib

1.0 1211.3 9.4 1220.7
1.5 833.4 7.1 840.5
2.0 640.1 5.8 645.9
2.5 521.9 4.9 526.8
3.0 442.6 4.3 446.8
3.5 385.1 3.8 388.8
4.5 307.4 3.1 310.5
5.0 279.8 2.9 282.7
6.0 238.3 2.5 240.8
8.0 185.7 2.0 187.6
10.0 152.6 1.6 154.2
12.0 130.8 1.4 132.2
14.0 115.1 1.2 116.3
16.0 102.2 1.1 103.3
18.0 92.1 1.0 93.1
20.0 84.7 0.9 85.6
25.0 70.2 0.8 71.0

positron scattering vis-à-vis the same process with elec-
trons. In an earlier study comparing angular distributions
for electron and positron scattering off the C2H2 molecule,
for instance, the authors found the positron angular distri-
butions, hence the corresponding ICS, to be smaller than
those caused by electrons, apart from a small angular cone
in the forward direction [28]. One further aspect of the ex-
perimental detection of integral cross sections is the dif-
ficulty, for polar molecules, to reliably evaluate the scat-
tered positron distribution in the forward direction and at
low energies. Hence, the discussion outlined below.

Our computed partial integral cross sections are shown
in Figure 1 and compared with each other in terms of
relative sizes. In the energy range considered the rotational
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Fig. 2. The computed elastic integral cross sections for
positron scattering from uracil is shown for the maximum an-
gular expansion Lmax = 40 by the solid black line. For compar-
ison our computed elastic integral cross sections for positron
scattering from pyrimidine [37] is also shown (dashed blue line).
The experimental data for positron uracil scattering by Surdu-
tovich et al. [16] is given by the upwards red triangles. For
comparison the experimental data for positron scattering from
pyrimidine by Palihawadana et al. [17] is also shown (raw data:
full blue diamonds, data including computed corrections for the
forward scattering: open blue diamonds).

inelastic cross section from J = 0 to J ′ = 1 is dominant.
It is more than one order of magnitude larger than the
rotational elastic cross section and more than two orders of
magnitude larger than the sum of the vibrational inelastic
cross sections.

For comparison we also report in Figure 2 the ICS
for uracil with those of the pyrimidine molecule, which
we recently studied with similar calculations [37]. Note
that the pyrimidine ICS includes rotational elastic and
inelastic channels only, whereas the uracil ICS addition-
ally includes the vibrationally inelastic channels. They
seem to be much smaller in size than those calculated for
uracil, and also to agree with the corresponding experi-
ment on this molecule [37]. The set of experimental data
for positron-uracil scattering is also shown in Figure 2.
The red upwards triangles are the experiments published
by Surdutovich et al. [16]. Due to the limited energy res-
olution in this experiments the measured cross sections
includes rotationally and vibrationally elastic and inelas-
tic processes.

The following comments could be made by looking at
the data reported in the figure: One is naturally aware
that, when doing scattering of positrons and electrons
off gaseous molecular targets with permanent dipole mo-
ments, the use of a body-fixed reference frame produces
divergent behavior of the angular distributions in the for-
ward direction, hence the corresponding elastic ICS turn
out to be incorrect chiefly in the small energy range where
forward scattering is usually dominant. One would there-
fore need to go through the calculations of the corre-
sponding differential cross sections, modifying them for
the higher angular momentum contributions via the Born
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Fig. 3. Comparison of partial differential cross sections at collision energies of 1.0 eV (left panel), 3.0 eV (middle panel)
and 6.0 eV (right panel). The thin blue lines show the various contributions to the rotational elastic (rotational 0–0, thin solid
blue line) and inelastic cross sections (other thin blue lines). The sum of the all vibrational inelastic cross sections is shown by
the thick dashed red line. The sum of rotational elastic and inelastic and vibrational inelastic cross sections is shown by the
solid black line.
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Fig. 4. Same as Figure 3, but for collision energies of 10.0 eV (left panel), 14.0 eV (middle panel) and 20.0 eV (right panel).

correction [29]. Therefore, although the present experi-
mental data do not cover the small angle region accu-
rately nor manage to go down to very low scattering en-
ergies, we still expect that the corrections to the final
cross sections outlined in the previous discussion of our
approach, and carried out here by us, should have for this
system the same dramatic effect of correcting the low-
energy, forward scattering distributions as that observed
earlier for another, albeit less polar, similar system: gas-
phase pyrimidine [37].

To further analyze this point, we also report in Fig-
ure 2 the sequence of the forward correction effects on
pyrimidine, already discussed in our earlier work on this
system [37]. The set of data given by the figure refers to
the data by Palihawadana et al. [17]. The experiments
by Palihawadana et al. is employing a linear transmission
technique. In such experiments unscattered particles can-
not be distinguished from particles that are scattered by
an angle lower than the angular discrimination angle θmin,
see e.g. Sullivan et al. [45]. This angle can be estimated
by a function of the retarding potential and of the scatter-
ing energy, as suggested by Kauppila et al. [46] and Kwan
et al. [47]. The uncorrected data points of Palihawadana
et al. [17] are given by the solid blue diamonds. We have
added to these points the integral of our computed dif-
ferential cross section for the forward-scattering cone be-
tween the forward direction and the angular discrimina-
tion angle θmin, as described in detail in reference [37]. The
corrected experimental data are given by the open blue di-
amonds. One clearly sees that the more realistic inclusion

of forward scattering data in the evaluation of the ICS pro-
duces over the whole range of energies a marked increase of
the sizes, with an even more dramatic change at energies
below about 7–8 eV: at 3 eV, for instance, the pyrimidine
ICS value changes from about 40 Å2 to more than 120 Å2!
Thus, it is reasonable to expect that the similar set of cor-
rections, when applied to the uncorrected ICS of uracil of
Surdutovich et al. [16], could lead to an increase close to
almost 400 Å2, not far from the computed value where
the effect of the long-range dipole has also been correctly
included at all angles, as outlined before. Furthermore, we
see that the ICS data of both uracil and pyrimidine are
strongly controlled by dipole scattering: in fact, we see
in Figure 2 that to go from a system with a permanent
dipole of μ ≈ 2.3 Debye, to one with μ ≈ 4.3 Debye causes
the corresponding ICS to nearly quadruple in value, as ex-
pected, given the influence of the quadratic dipole term in
the Born approximation.

Our computed partial differential cross sections at var-
ious scattering energies are shown in Figures 3 and 4 and
are listed for some selected energies, and for some rep-
resentative scattering angles, in Tables 4 and 5. All cross
sections have strong forward peaks, due to the dipole term
in the rotational inelastic cross section for the J = 0 to
J ′ = 1 transition. The sum of the vibrational inelastic
cross sections have a very narrow forward scattering peak
due to the transition dipole moment of the various vibra-
tional excitations. These figures show clearly that most
of the contributions to the scattering cross sections are
contained in a small forward cone.
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Table 4. Various contributions to the DCS at collision energies of 1.0 eV (left), 3.0 eV (middle) and 6.0 eV (right). All values
are given in 10−16 cm2 sr−1.

Energy 1.0 eV 3.0 eV 6.0 eV

Angle 30 60 90 120 150 30 60 90 120 150 30 60 90 120 150
dσelas
dΩ

7.0 0.2 0.5 0.8 0.6 1.5 1.3 0.6 0.3 0.3 2.6 1.0 0.2 0.1 0.1
dσrot
dΩ

69.3 19.2 11.5 7.3 7.1 22.3 7.4 3.9 2.4 2.6 13.2 4.2 1.9 1.4 1.5
dσvib
dΩ

1.7 0.5 0.2 0.2 0.1 0.6 0.2 0.1 0.1 0.0 0.3 0.1 0.0 0.0 0.0
dσrot
dΩ

+ dσvib
dΩ

71.0 19.6 11.8 7.5 7.2 22.9 7.6 3.9 2.4 2.6 13.5 4.2 2.0 1.4 1.5

Table 5. Various contributions to the DCS at collision energies of 10.0 eV (left), 14.0 eV (middle) and 20.0 eV (right). All
values are given in 10−16 cm2 sr−1.

Energy 10.0 eV 14.0 eV 20.0 eV

Angle 30 60 90 120 150 30 60 90 120 150 30 60 90 120 150
dσelas

dΩ
3.8 0.4 0.1 0.0 0.0 4.1 0.2 0.0 0.0 0.0 3.4 0.0 0.0 0.0 0.0

dσrot
dΩ

10.5 2.4 1.3 1.0 1.1 9.0 1.7 1.0 0.7 0.8 7.0 1.2 0.7 0.6 0.6
dσvib
dΩ

0.2 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
dσrot
dΩ

+ dσvib
dΩ

10.7 2.5 1.3 1.0 1.1 9.1 1.7 1.0 0.7 0.8 7.0 1.2 0.7 0.6 0.6

4 Present conclusions

The interaction of slow positrons with biosystems at low
scattering energies are of current interest in that they can
provide information on the structural issues related to the
positron physics of these systems, thereby answering ques-
tions such as:

1. How large are the integral cross sections for the RNA
and DNA and its components in relation to the behav-
ior of low-energy electrons?

2. Can we estimate the annihilation efficiency of the
above molecules, thereby relating such data, which are
molecule-specific, to the necessary sensitivity of tomo-
graphic analysis?

In the present study we have started to work on a compu-
tational answer to the first of the above questions and have
provided a realistic estimate, starting from first principles
and carrying out accurate, multichannel scattering calcu-
lations, of the elastic integral cross sections for the uracil
molecule in the gas phase, further correcting the computed
data for the overall effect of the permanent dipole moment
of the target, as discussed earlier.

In relation to the existing experiments, our data indi-
cate thus far that the average size of the computed cross
sections in comparison with the available measurements
is much larger than the latter and shows a much stronger
increase at threshold.

In order to better understand the reliability of such
findings, we have looked at the same calculations for the
pyrimidine molecules, for which a larger group of exper-
iments is available and which have been shown by our
earlier comparison between them [37] to be in very good
accord with each other, as shown again by the data in
Figure 2. Additionally, when we further detail the com-
parison between the two sets of calculations (see Fig. 2)

it shows that, as expected, the ICS data for uracil are
much larger and go more rapidly to larger values as the
energy decreases. As a matter of fact, we have argued in
our previous discussion that both sets of cross sections are
dominated by dipole-driven interaction and therefore since
the uracil system has nearly twice as large a dipole, the
corresponding ICS below 10 eV of collision energy should
accordingly increase by a factor of four, as indeed seen to
occur in our calculations as reported in that figure.

Given the further observation that our computed
pyrimidine cross sections are in very good accord, both
in size and energy dependence, with the corrected ex-
perimental data, and that the experiments for the latter
molecule appear in Figure 2 to be larger than the existing
experiments for uracil, we surmise that our converged cal-
culations for integral cross sections presented in this work
indicate rather convincingly that the experimental data
may still be missing a substantial cone of positron flux in
the forward directions for the lower collision energies. To
further provide helpful comparison data to future exper-
iments, we also report in several figures and in detailed
tables the angular scattering of positron projectiles from
gas-phase uracil molecules.

In conclusion, the present discussion on our new calcu-
lations for the uracil molecule and our further comparison
of these ICS with the earlier data for pyrimidine [37], sug-
gests that the former target gas should exhibit much larger
integral cross section values from experiments in the low-
energy regions and that the calculations already indicate
such an increase with respect to both the existing exper-
iments and the similar data for another polar gas with a
much smaller permanent dipole moment: pyrimidine.
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