Skip to main content
Log in

From hard exclusive meson electroproduction to deeply virtual Compton scattering

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We systematically evaluate observables for hard exclusive electroproduction of real photons and compare them to experiment using a set of Generalized Parton Distributions (GPDs) whose parameters are constrained by Deeply Virtual Meson Production data, nucleon form factors and parton distributions. The Deeply Virtual Compton Scattering amplitudes are calculated to leading-twist accuracy and leading order in QCD perturbation theory while the leptonic tensor is treated exactly, without any approximation. This study constitutes a check of the universality of the GPDs. We summarize all relevant details on the parameterizations of the GPDs and describe its use in the handbag approach of the aforementioned hard scattering processes. We observe good agreement between predictions and measurements of deeply virtual Compton scattering on a wide kinematic range, including most data from H1, ZEUS, HERMES, Hall A and CLAS collaborations for unpolarized and polarized targets when available. We also give predictions relevant for future experiments at COMPASS and JLab after the 12 GeV upgrade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Formally, Deeply Virtual Compton Scattering or DVCS refers only to the subprocess γ pγp. However, DVCS is often used more loosely in the literature to name the photon leptoproduction process lplpγ used experimentally.

  2. The variables ρ and η are usually denoted by β and α, respectively. However, we do not use this notation here in order to avoid a clash of notation. The latter symbols are already used for powers in the functional form.

  3. Another method to treat \(\gamma_{T}^{*}\to V_{T}\) transitions has been proposed in Ref. [66].

References

  1. A.V. Radyushkin, Phys. Lett. B 385, 333 (1996). hep-ph/9605431

    Article  ADS  Google Scholar 

  2. X.-D. Ji, Phys. Rev. D 55, 7114 (1997). hep-ph/9609381

    Article  ADS  Google Scholar 

  3. J.C. Collins, L. Frankfurt, M. Strikman, Phys. Rev. D 56, 2982 (1997). hep-ph/9611433

    Article  ADS  Google Scholar 

  4. J.C. Collins, A. Freund, Phys. Rev. D 59, 074009 (1999). hep-ph/9801262

    Article  ADS  Google Scholar 

  5. D. Mueller, D. Robaschik, B. Geyer, F.M. Dittes, J. Horejsi, Fortschr. Phys. 42, 101 (1994). hep-ph/9812448

    Article  Google Scholar 

  6. A.V. Radyushkin, Phys. Rev. D 56, 5524 (1997). hep-ph/9704207

    Article  ADS  Google Scholar 

  7. M. Burkardt, Phys. Rev. D 62, 071503 (2000). [Erratum-ibid. D 66, 119903 (2002)]. hep-ph/0005108

    Article  ADS  Google Scholar 

  8. M. Diehl, Eur. Phys. J. C 25, 223 (2002). [Erratum-ibid. C 31, 277 (2003)]. hep-ph/0205208

    Article  ADS  Google Scholar 

  9. J.P. Ralston, B. Pire, Phys. Rev. D 66, 111501 (2002). hep-ph/0110075

    Article  ADS  Google Scholar 

  10. J.D. Bratt et al. (LHPC Collaboration), Phys. Rev. D 82, 094502 (2010). arXiv:1001.3620 [hep-lat]

    Article  ADS  Google Scholar 

  11. S. Collins, M. Gockeler, P. Hagler, R. Horsley, Y. Nakamura, A. Nobile, D. Pleiter, P.E.L. Rakow et al., Phys. Rev. D 84, 074507 (2011). arXiv:1106.3580 [hep-lat]

    Article  ADS  Google Scholar 

  12. V.Y. Petrov, P.V. Pobylitsa, M.V. Polyakov, I. Bornig, K. Goeke, C. Weiss, Phys. Rev. D 57, 4325 (1998). hep-ph/9710270

    Article  ADS  Google Scholar 

  13. M. Diehl, T. Feldmann, R. Jakob, P. Kroll, Eur. Phys. J. C 8, 409 (1999). hep-ph/9811253

    ADS  Google Scholar 

  14. S. Scopetta, V. Vento, Phys. Rev. D 71, 014014 (2005). hep-ph/0410191

    Article  ADS  Google Scholar 

  15. C. Lorce, B. Pasquini, Phys. Rev. D 84, 014015 (2011). arXiv:1106.0139 [hep-ph]

    Article  ADS  Google Scholar 

  16. L. Mankiewicz, G. Piller, T. Weigl, Phys. Rev. D 59, 017501 (1999). hep-ph/9712508

    Article  ADS  Google Scholar 

  17. L. Mankiewicz, G. Piller, A. Radyushkin, Eur. Phys. J. C 10, 307 (1999). hep-ph/9812467

    Article  ADS  Google Scholar 

  18. L.L. Frankfurt, P.V. Pobylitsa, M.V. Polyakov, M. Strikman, Phys. Rev. D 60, 014010 (1999). hep-ph/9901429

    Article  ADS  Google Scholar 

  19. M. Vanderhaeghen, P.A.M. Guichon, M. Guidal, Phys. Rev. D 60, 094017 (1999). hep-ph/9905372

    Article  ADS  Google Scholar 

  20. A.V. Belitsky, D. Mueller, L. Niedermeier, A. Schafer, Nucl. Phys. B 593, 289 (2001). hep-ph/0004059

    Article  ADS  Google Scholar 

  21. A.V. Belitsky, D. Mueller, A. Kirchner, Nucl. Phys. B 629, 323 (2002). hep-ph/0112108

    Article  ADS  Google Scholar 

  22. A. Freund, M.F. McDermott, Phys. Rev. D 65, 074008 (2002). hep-ph/0106319

    Article  ADS  Google Scholar 

  23. K. Kumericki, D. Mueller, K. Passek-Kumericki, Nucl. Phys. B 794, 244 (2008). hep-ph/0703179

    Article  ADS  MATH  Google Scholar 

  24. K. Kumericki, D. Mueller, Nucl. Phys. B 841, 1 (2010). arXiv:0904.0458 [hep-ph]

    Article  ADS  Google Scholar 

  25. S.V. Goloskokov, P. Kroll, Eur. Phys. J. C 42, 281 (2005). hep-ph/0501242

    Article  ADS  Google Scholar 

  26. S.V. Goloskokov, P. Kroll, Eur. Phys. J. C 53, 367 (2008). arXiv:0708.3569 [hep-ph]

    Article  ADS  Google Scholar 

  27. S. Ahmad, G.R. Goldstein, S. Liuti, Phys. Rev. D 79, 054014 (2009). arXiv:0805.3568 [hep-ph]

    Article  ADS  Google Scholar 

  28. S.V. Goloskokov, P. Kroll, Eur. Phys. J. C 65, 137 (2010). arXiv:0906.0460 [hep-ph]

    Article  ADS  Google Scholar 

  29. M. Guidal, H. Moutarde, Eur. Phys. J. A 42, 71 (2009). arXiv:0905.1220 [hep-ph]

    Article  ADS  Google Scholar 

  30. H. Moutarde, Phys. Rev. D 79, 094021 (2009). arXiv:0904.1648 [hep-ph]

    Article  ADS  Google Scholar 

  31. M. Meskauskas, D. Mueller, arXiv:1112.2597 [hep-ph]

  32. D. Boer, M. Diehl, R. Milner, R. Venugopalan, W. Vogelsang, D. Kaplan, H. Montgomery, S. Vigdor et al., arXiv:1108.1713 [nucl-th]

  33. A.V. Belitsky, D. Mueller, Phys. Rev. D 82, 074010 (2010). arXiv:1005.5209 [hep-ph]

    Article  ADS  Google Scholar 

  34. A.V. Radyushkin, Phys. Lett. B 449, 81 (1999). hep-ph/9810466

    Article  ADS  Google Scholar 

  35. M.V. Polyakov, C. Weiss, Phys. Rev. D 60, 114017 (1999). hep-ph/9902451

    Article  ADS  Google Scholar 

  36. M. Diehl, T. Feldmann, R. Jakob, P. Kroll, Eur. Phys. J. C 39, 1 (2005). hep-ph/0408173

    Article  ADS  Google Scholar 

  37. M. Burkardt, Int. J. Mod. Phys. A 18, 173 (2003). hep-ph/0207047

    Article  ADS  MATH  Google Scholar 

  38. M. Diehl, Phys. Rep. 388, 41 (2003). hep-ph/0307382

    Article  ADS  Google Scholar 

  39. P.V. Pobylitsa, Phys. Rev. D 66, 094002 (2002). hep-ph/0204337

    Article  ADS  Google Scholar 

  40. M. Burkardt, Phys. Lett. B 582, 151 (2004). hep-ph/0309116

    Article  ADS  Google Scholar 

  41. J.R. Green, M. Engelhardt, S. Krieg, J.W. Negele, A.V. Pochinsky, S.N. Syritsyn, arXiv:1209.1687 [hep-lat]

  42. G.S. Bali, S. Collins, M. Deka, B. Glaessle, M. Gockeler, J. Najjar, A. Nobile, D. Pleiter et al., Phys. Rev. D 86, 054504 (2012). arXiv:1207.1110 [hep-lat]

    Article  ADS  Google Scholar 

  43. P.V. Landshoff, J.C. Polkinghorne, R.D. Short, Nucl. Phys. B 28, 225 (1971)

    Article  ADS  Google Scholar 

  44. F.D. Aaron et al. (H1 Collaboration), J. High Energy Phys. 1005, 032 (2010). arXiv:0910.5831 [hep-ex]

    Article  ADS  Google Scholar 

  45. S. Chekanov et al. (ZEUS Collaboration), PMC Phys. A 1, 6 (2007). arXiv:0708.1478 [hep-ex]

    Article  ADS  Google Scholar 

  46. J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky, W.K. Tung, J. High Energy Phys. 0207, 012 (2002). hep-ph/0201195

    Article  ADS  Google Scholar 

  47. A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Eur. Phys. J. C 23, 73 (2002). hep-ph/0110215

    Article  ADS  Google Scholar 

  48. S. Alekhin, JETP Lett. 82, 628 (2005). [Pis’ma Zh. Eksp. Teor. Fiz. 82, 710 (2005)] hep-ph/0508248

    Article  ADS  Google Scholar 

  49. H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P.M. Nadolsky, J. Pumplin, C.-P. Yuan, Phys. Rev. D 82, 074024 (2010). arXiv:1007.2241 [hep-ph]

    Article  ADS  Google Scholar 

  50. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 70, 51 (2010). arXiv:1007.2624 [hep-ph]

    Article  ADS  Google Scholar 

  51. R.D. Ball et al. (NNPDF Collaboration), Nucl. Phys. B 809, 1 (2009). [Erratum-ibid. B 816, 293 (2009)] arXiv:0808.1231 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  52. A. Airapetian et al. (HERMES Collaboration), Phys. Lett. B 679, 100 (2009). arXiv:0906.5160 [hep-ex]

    Article  ADS  Google Scholar 

  53. C. Adolph et al. (COMPASS Collaboration), Nucl. Phys. B 865, 1 (2012). arXiv:1207.4301 [hep-ex]

    Article  ADS  Google Scholar 

  54. M. Diehl, P. Kroll, work in progress

  55. S.V. Goloskokov, P. Kroll, Eur. Phys. J. C 59, 809 (2009). arXiv:0809.4126 [hep-ph]

    Article  ADS  Google Scholar 

  56. M. Diehl, W. Kugler, Eur. Phys. J. C 52, 933 (2007). arXiv:0708.1121 [hep-ph]

    Article  ADS  Google Scholar 

  57. J. Blümlein, H. Böttcher, Nucl. Phys. B 636, 225 (2002). hep-ph/0203155

    Article  ADS  Google Scholar 

  58. A. Airapetian et al. (HERMES Collaboration), Phys. Lett. B 659, 486 (2008). arXiv:0707.0222 [hep-ex]

    Article  ADS  Google Scholar 

  59. A. Airapetian et al. (HERMES Collaboration), Phys. Lett. B 682, 345 (2010). arXiv:0907.2596 [hep-ex]

    Article  ADS  Google Scholar 

  60. M. Vanderhaeghen, P.A.M. Guichon, M. Guidal, Phys. Rev. D 60, 094017 (1999). hep-ph/9905372

    Article  ADS  Google Scholar 

  61. M. Penttinen, M.V. Polyakov, K. Goeke, Phys. Rev. D 62, 014024 (2000). hep-ph/9909489

    Article  ADS  Google Scholar 

  62. B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 80, 052002 (2009). arXiv:0905.4778 [hep-ex]

    Article  ADS  Google Scholar 

  63. S. Uehara et al. (Belle Collaboration). arXiv:1205.3249 [hep-ex]

  64. S.V. Goloskokov, P. Kroll, Eur. Phys. J. A 47, 112 (2011). arXiv:1106.4897 [hep-ph]

    Article  ADS  Google Scholar 

  65. J. Botts, G. Sterman, Nucl. Phys. B 325, 62 (1989)

    Article  ADS  Google Scholar 

  66. I.V. Anikin, D.Y. Ivanov, B. Pire, L. Szymanowski, S. Wallon, Nucl. Phys. B 828, 1 (2010). arXiv:0909.4090 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  67. N. Korchagin, N. Kochelev, N. Nikolaev, arXiv:1111.1831 [hep-ph]

  68. S.V. Goloskokov, P. Kroll, Eur. Phys. J. C 50, 829 (2007). hep-ph/0611290

    Article  ADS  Google Scholar 

  69. A. Bacchetta, U. D’Alesio, M. Diehl, C.A. Miller, Phys. Rev. D 70, 117504 (2004). hep-ph/0410050

    Article  ADS  Google Scholar 

  70. W. Augustiniak (HERMES Collaboration), talk presented at DIS08, London (2008)

  71. M. Diehl, S. Sapeta, Eur. Phys. J. C 41, 515 (2005). hep-ph/0503023

    Article  ADS  Google Scholar 

  72. M. Diehl, Th. Gousset, B. Pire, J.P. Ralston, Phys. Lett. B 411, 193 (1997). hep-ph/9706344

    Article  ADS  Google Scholar 

  73. C. Muñoz Camacho et al., Phys. Rev. Lett. 97, 262002 (2006). nucl-ex/0607029

    Article  ADS  Google Scholar 

  74. F.X. Girod et al., Phys. Rev. Lett. 100, 162002 (2008). arXiv:0711.4805 [hep-ex]

    Article  ADS  Google Scholar 

  75. P.A.M. Guichon, M. Vanderhaeghen, Analytic eeγ cross section, in Atelier DVCS, Laboratoire de Physique Corpusculaire, Clermont-Ferrand, June 30–July 01, 2008

    Google Scholar 

  76. P.A.M. Guichon, M. Vanderhaeghen, Prog. Part. Nucl. Phys. 41, 125 (1998). hep-ph/9806305

    Article  ADS  Google Scholar 

  77. M. Vanderhaeghen, P.A.M. Guichon, M. Guidal, Phys. Rev. Lett. 80, 5064 (1998)

    Article  ADS  Google Scholar 

  78. M. Guidal, H. Moutarde, Eur. Phys. J. A 42, 71 (2009). arXiv:0905.1220 [hep-ph]

    Article  ADS  Google Scholar 

  79. A.V. Belitsky, D. Mueller, Phys. Rev. D 79, 014017 (2009). arXiv:0809.2890 [hep-ph]

    Article  ADS  Google Scholar 

  80. X.-D. Ji, J. Osborne, Phys. Rev. D 58, 094018 (1998). hep-ph/9801260

    Article  ADS  Google Scholar 

  81. L. Mankiewicz, G. Piller, E. Stein, M. Vanttinen, T. Weigl, Phys. Lett. B 425, 186 (1998). hep-ph/9712251

    Article  ADS  Google Scholar 

  82. A.V. Belitsky, D. Mueller, Phys. Lett. B 417, 129 (1998). hep-ph/9709379

    Article  ADS  Google Scholar 

  83. A.V. Belitsky, D. Mueller, L. Niedermeier, A. Schafer, Phys. Lett. B 474, 163 (2000). hep-ph/9908337

    Article  ADS  Google Scholar 

  84. B. Pire, L. Szymanowski, J. Wagner, Phys. Rev. D 83, 034009 (2011). arXiv:1101.0555 [hep-ph]

    Article  ADS  Google Scholar 

  85. T. Altinoluk, B. Pire, L. Szymanowski, S. Wallon, arXiv:1206.3115 [hep-ph]

  86. V.M. Braun, A.N. Manashov, B. Pirnay, Phys. Rev. D 86, 014003 (2012). arXiv:1205.3332 [hep-ph]

    Article  ADS  Google Scholar 

  87. V.M. Braun, A.N. Manashov, B. Pirnay, arXiv:1209.2559 [hep-ph]

  88. I.V. Anikin, B. Pire, O.V. Teryaev, Phys. Rev. D 62, 071501 (2000). hep-ph/0003203

    Article  ADS  Google Scholar 

  89. A.V. Radyushkin, C. Weiss, Phys. Rev. D 63, 114012 (2001). hep-ph/0010296

    Article  ADS  Google Scholar 

  90. N. Kivel, M.V. Polyakov, M. Vanderhaeghen, Phys. Rev. D 63, 114014 (2001). hep-ph/0012136

    Article  ADS  Google Scholar 

  91. A. Aktas et al. (H1 Collaboration), Eur. Phys. J. C 44, 1 (2005). hep-ex/0505061

    ADS  Google Scholar 

  92. F.D. Aaron et al. (H1 Collaboration), Phys. Lett. B 681, 391 (2009). arXiv:0907.5289 [hep-ex]

    Article  ADS  Google Scholar 

  93. S. Chekanov et al. (ZEUS Collaboration), Phys. Lett. B 573, 46 (2003). hep-ex/0305028

    Article  ADS  Google Scholar 

  94. S. Chekanov et al. (ZEUS Collaboration), J. High Energy Phys. 0905, 108 (2009). arXiv:0812.2517 [hep-ex]

    ADS  Google Scholar 

  95. A. Airapetian et al. (HERMES Collaboration), J. High Energy Phys. 0806, 066 (2008). arXiv:0802.2499 [hep-ex]

    Google Scholar 

  96. A. Airapetian et al. (HERMES Collaboration), J. High Energy Phys. 1006, 019 (2010). arXiv:1004.0177 [hep-ex]

    Article  ADS  Google Scholar 

  97. A. Airapetian et al. (HERMES Collaboration), J. High Energy Phys. 1207, 032 (2012). arXiv:1203.6287 [hep-ex]

    Article  ADS  Google Scholar 

  98. A. Airapetian et al. (HERMES Collaboration). arXiv:1206.5683 [hep-ex]

  99. S. Chen et al. (CLAS Collaboration), Phys. Rev. Lett. 97, 072002 (2006). hep-ex/0605012

    Article  ADS  Google Scholar 

  100. J.J. Kelly, Phys. Rev. C 70, 068202 (2004)

    Article  ADS  Google Scholar 

  101. F. Gautheron et al. (COMPASS Collaboration). COMPASS-II proposal [CERN-SPSC-2010-014]

  102. A. Biselli, H. Egiyan, L. Elouadrhiri, M. Holtrop, D. Ireland, W. Kim, F. Sabatié et al. (CLAS12), JLab Experiment E12-06-119 (2006)

  103. P. Bertin, C. Hyde, C. Munoz Camacho, J. Roche et al. (Jefferson Lab Hall A), JLab Experiment E07-007 (2010)

Download references

Acknowledgements

The authors would like to thank M. Diehl, N. D’Hose, D. Müller, W.-D. Nowak and G. Schnell for many fruitful discussions and valuable inputs.

This work was supported in part by the Commissariat à l’Energie Atomique et aux Energies Alternatives and the GDR 3034 PH-QCD and by the BMBF under contract 06RY258.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Sabatié.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kroll, P., Moutarde, H. & Sabatié, F. From hard exclusive meson electroproduction to deeply virtual Compton scattering. Eur. Phys. J. C 73, 2278 (2013). https://doi.org/10.1140/epjc/s10052-013-2278-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2278-0

Keywords

Navigation