Skip to main content
Log in

Top quark effects in composite vector pair production at the LHC

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In the context of strongly coupled Electroweak Symmetry Breaking, composite light scalar singlet and composite triplet of heavy vectors may arise from an unspecified strong dynamics and the interactions among themselves and with the Standard Model gauge bosons and fermions can be described by a SU(2) L ×SU(2) R /SU(2) L+R effective chiral Lagrangian. In this framework, the production of the V + V and V 0 V 0 final states at the LHC by gluon fusion mechanism is studied in the region of parameter space consistent with the unitarity constraints in the elastic channel of longitudinal gauge boson scattering and in the inelastic scattering of two longitudinal Standard Model gauge bosons into Standard Model fermions pairs. The expected rates of same-sign di-lepton and tri-lepton events from the decay of the V 0 V 0 final state are computed and their corresponding backgrounds are estimated. It is of remarkable relevance that the V 0 V 0 final state can only be produced at the LHC via a gluon fusion mechanism since this state is absent in the Drell–Yan process. It is also found that the V + V final-state production cross section via gluon fusion mechanism is comparable with the V + V Drell–Yan production cross section. The comparison of the V 0 V 0 and V + V total cross sections will be crucial for distinguishing the different models since the vector pair production is sensitive to many couplings. This will also be useful to determine if the heavy vectors are only composite vectors or are gauge vectors of a spontaneously broken gauge symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. I shall not impose the constraints coming from the EW Precision Tests since further effects can be present, e.g. due to new fermionic degrees of freedom, that obscure their interpretation and/or a strong sensitivity to the physics at the cut-off may be involved which I do not pretend to control.

  2. In general c will be a matrix in flavor space, but in the following it is assumed for simplicity that it is proportional to unity in the basis in which the mass matrix is diagonal. This guarantees the absence of flavor changing neutral effects originated from the tree level exchange of h.

References

  1. T. Appelquist, R. Shrock, Phys. Rev. Lett. 90, 201801 (2003). arXiv:hep-ph/0301108

    Article  ADS  Google Scholar 

  2. J. Hirn, A. Martin, V. Sanz, J. High Energy Phys. 0805, 084 (2008). arXiv:0712.3783 [hep-ph]

    Article  ADS  Google Scholar 

  3. J. Hirn, A. Martin, V. Sanz, Phys. Rev. D 78, 075026 (2008). arXiv:0807.2465 [hep-ph]

    Article  ADS  Google Scholar 

  4. A. Belyaev, R. Foadi, M.T. Frandsen, M. Jarvinen, F. Sannino, A. Pukhov, Phys. Rev. D 79, 035006 (2009). arXiv:0809.0793 [hep-ph]

    Article  ADS  Google Scholar 

  5. C. Quigg, R. Shrock, Phys. Rev. D 79, 096002 (2009). arXiv:0901.3958 [hep-ph]

    Article  ADS  Google Scholar 

  6. C. Hill, E. Simmons, Phys. Rep. 381, 235 (2003). arXiv:hep-ph/0203079

    Article  ADS  Google Scholar 

  7. J.R. Andersen et al., Eur. Phys. J. Plus 126, 81 (2011). arXiv:1104.1255 [hep-ph]

    Article  Google Scholar 

  8. D.B. Kaplan, H. Georgi, Phys. Lett. B 136, 183 (1984)

    Article  ADS  Google Scholar 

  9. M.A. Luty, Phys. Rev. D 41, 2893 (1990)

    Article  ADS  Google Scholar 

  10. R.S. Chivukula, V. Koulovassilopoulos, Phys. Lett. B 309, 371 (1993). arXiv:hep-ph/9304293

    Article  ADS  Google Scholar 

  11. R. Contino, arXiv:0908.3578 [hep-ph]

  12. R. Contino, arXiv:1005.4269v1 [hep-ph]

  13. C. Grojean, arXiv:0910.4976v1 [hep-ph]

  14. G.F. Giudice, C. Grojean, A. Pomarol, R. Rattazzi, J. High Energy Phys. 0706, 045 (2007). arXiv:hep-ph/0703164

    Article  ADS  Google Scholar 

  15. G. Burdman, L.D. Rold, J. High Energy Phys. 0712, 086 (2007). arXiv:0710.0623 [hep-ph]

    Article  ADS  Google Scholar 

  16. I. Low, R. Rattazzi, A. Vichi, arXiv:0907.5413 [hep-ph]

  17. A.R. Zerwekh, Mod. Phys. Lett. A 25, 423 (2010). arXiv:0907.4690 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  18. G. Burdman, C.E.F. Haluch, arXiv:1109.3914v1 [hep-ph]

  19. A.E. Cárcamo Hernández, C.O. Dib, H.N. Neill, A.R. Zerwekh, J. High Energy Phys. 1202, 132 (2012). arXiv:1201.0878 [hep-ph]

    Article  ADS  Google Scholar 

  20. J. Bagger et al., Phys. Rev. D 49, 1246 (1994)

    Article  ADS  Google Scholar 

  21. J.R. Peláez, Phys. Rev. D 55, 4193 (1997). arXiv:hep-ph/9609427

    Article  ADS  Google Scholar 

  22. R.S. Chivukula, D.A. Dicus, H.J. He, Phys. Lett. B 525, 175 (2002). arXiv:hep-ph/0111016

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. C. Csaki, C. Grojean, H. Murayama, L. Pilo, J. Terning, Phys. Rev. D 69, 055006 (2004). arXiv:hep-ph/0305237

    Article  ADS  Google Scholar 

  24. R. Barbieri, G. Isidori, V.S. Rychkov, E. Trincherini, Phys. Rev. D 78, 036012 (2008). arXiv:0806.1624 [hep-ph]

    Article  ADS  Google Scholar 

  25. O. Cata, G. Isidori, J.F. Kamenik, Nucl. Phys. B 822, 230 (2009). arXiv:0905.0490 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  26. R. Barbieri, A.E. Cárcamo Hernández, G. Corcella, R. Torre, E. Trincherini, J. High Energy Phys. 03, 068 (2010). arXiv:0911.1942 [hep-ph]

    Article  ADS  Google Scholar 

  27. C. Grojean, E. Salvioni, R. Torre, J. High Energy Phys. 07, 002 (2011). arXiv:1201.0878 [hep-ph]

    Article  ADS  Google Scholar 

  28. R. Casalbuoni, S. De Curtis, D. Dominici, R. Gatto, Phys. Lett. B 155, 95 (1985)

    Article  ADS  Google Scholar 

  29. R. Casalbuoni, S. De Curtis, D. Dominici, R. Gatto, Nucl. Phys. B 282, 235 (1987)

    Article  ADS  Google Scholar 

  30. A.R. Zerwekh, Eur. Phys. J. C 46, 791 (2006). arXiv:hep-ph/0512261

    Article  ADS  Google Scholar 

  31. A.E. Cárcamo Hernández, R. Torre, Nucl. Phys. B 841, 188 (2010). arXiv:1005.3809 [hep-ph]

    Article  Google Scholar 

  32. A.E. Cárcamo Hernández, PhD thesis, arXiv:1108.0115 [hep-ph]

  33. R. Torre, PhD thesis, arXiv:1110.3906 [hep-ph]

  34. D.B. Kaplan, Nucl. Phys. B 365, 259 (1991)

    Article  ADS  Google Scholar 

  35. R. Barbieri, G. Isidori, D. Pappadopulo, J. High Energy Phys. 02, 029 (2009). arXiv:0811.2888 [hep-ph]

    Article  ADS  Google Scholar 

  36. R.S. Chivukula, D.A. Dicus, H.J. He, S. Nandi, Phys. Lett. B 562, 109 (2003). arXiv:hep-ph/0302263

    Article  ADS  Google Scholar 

  37. R. Barbieri, A. Pomarol, R. Rattazzi, Phys. Lett. B 591, 141 (2004). arXiv:hep-ph/0310285

    Article  ADS  Google Scholar 

  38. Y. Nomura, J. High Energy Phys. 0311, 050 (2003). arXiv:hep-ph/0309189

    Article  ADS  Google Scholar 

  39. R. Foadi, S. Gopalakrishna, C. Schmidt, J. High Energy Phys. 0403, 042 (2004). arXiv:hep-ph/0312324

    Article  ADS  Google Scholar 

  40. H. Georgi, Phys. Rev. D 71, 015016 (2005). arXiv:hep-ph/0408067

    Article  ADS  Google Scholar 

  41. R.S. Chivukula, H.J. He, M. Kurachi, E.H. Simmons, M. Tanabashi, Phys. Rev. D 78, 095003 (2008). arXiv:0808.1682 [hep-ph]

    Article  ADS  Google Scholar 

  42. R. Foadi, M. Järvinen, F. Sannino, Phys. Rev. D 79, 035010 (2008). arXiv:0811.3719 [hep-ph]

    Article  ADS  Google Scholar 

  43. R. Foadi, M. Jarvinen, F. Sannino, Phys. Rev. D 79, 035010 (2008). arXiv:0811.3719 [hep-ph]

    Article  ADS  Google Scholar 

  44. H.J. He et al., Phys. Rev. D 78, 031701 (2008). arXiv:0708.2588 [hep-ph]

    Article  ADS  Google Scholar 

  45. E. Accomando, S. De Curtis, D. Dominici, L. Fedeli, Phys. Rev. D 79, 055020 (2009). arXiv:0807.5051 [hep-ph]

    Article  ADS  Google Scholar 

  46. E. Accomando, S. De Curtis, D. Dominici, L. Fedeli, Nuovo Cimento 123B, 809 (2008). arXiv:0807.2951 [hep-ph]

    ADS  Google Scholar 

  47. A. Birkedal, K.T. Matchev, M. Perelstein, in The Proceedings of 2005 International Linear Collider Workshop (LCWS 2005), Stanford, California, 18–22 March 2005, (2005), p. 0314. arXiv:hep-ph/0508185

    Google Scholar 

  48. T. Han, D.L. Rainwater, G. Valencia, Phys. Rev. D 68, 015003 (2003). arXiv:hep-ph/0301039

    Article  ADS  Google Scholar 

  49. R. Contino, C. Grojean, M. Moretti, F. Piccinini, R. Rattazzi, J. High Energy Phys. 1005, 089 (2010). arXiv:1002.1011 [hep-ph]

    Article  ADS  Google Scholar 

  50. M. Grazzini, J. High Energy Phys. 0601, 095 (2006). arXiv:hep-ph/0510337

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author is greatly indebted to Professors Riccardo Barbieri, Gino Isidori, Alfonso Zerwekh and Claudio Dib for many useful suggestions and for careful reading of the manuscript. The author also thanks his wife for drawing the Feynman diagrams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Cárcamo Hernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cárcamo Hernández, A.E. Top quark effects in composite vector pair production at the LHC. Eur. Phys. J. C 72, 2154 (2012). https://doi.org/10.1140/epjc/s10052-012-2154-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2154-3

Keywords

Navigation