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Abstract. We consider diffusion under stochastic resetting to the origin in one dimension and compute
the mean time to find both of two targets placed either side of the origin. A surprising result is that
increasing the distance between two targets can decrease the overall search time. We compute the optimal
arrangement of two targets in limiting cases. We generalise to obtain recursive expressions for the mean
time to find all of multiple targets. We discuss the relevance to real-world problems of locating multiple
targets such as proteins locating clusters of DNA lesions.

1 Introduction

It has long been appreciated that search processes in
biology are speeded up by the use of search strate-
gies which include long-range as well as short-range
moves [1]. For example, in order that vital biological
functions occur, proteins must locate binding sites on
DNA rapidly to trigger various transcription processes.
In fact, they locate sites up to 1000 times faster than
expected for a diffusion-controlled process [2]. The first
theories that attempted to account for these fast search
times proposed facilitated diffusion as the search mech-
anism [3–5]. This mechanism reduces the dimensional-
ity of the search by splitting it into 1D and 3D compo-
nents: the proteins search in 1D along a strand of DNA
to which they are loosely bound and then disassociate,
diffuse in 3d and re-associate at another non-specific
site, which may be far along the strand, to continue the
1D search.

More recently, search processes have been of interest
within the statistical physics community and different
classes of search strategies have been identified, see e.g.
[6–9]. Different specific search problems may have dif-
ferent protocols, but they share the desire for an opti-
mal search strategy. In an intermittent search (see [10]
for a review) there are local steps, which effect search-
ing, interspersed with long distance relocations. Such a
combination of moves is believed to be beneficial in wide
range of biological behaviours from animal foraging to
target search of proteins on DNA molecules [11–13].

A simple model for searching with short-range and
long-range moves is diffusion with stochastic resetting
[14]. Here short range foraging is modelled by diffusion
of the searcher and long-range relocations by instan-
taneous ‘reset events’. In the simplest framework the
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resetting of the searcher is to a fixed resetting loca-
tion but a distribution of resetting sites may also be
considered [15]. It has been shown that the mean time
for the searcher to locate a fixed target is significantly
improved by the inclusion of resetting. Indeed, for a
purely diffusive process the mean time to locate a
target diverges whereas it is rendered finite by the
introduction of a resetting process. Moreover, by tun-
ing the resetting rate, one may optimise the mean
time to locate a target. The resetting paradigm has
been explored in a number of other contexts includ-
ing restarting of stochastic algorithms [16] and complex
chemical reactions [17]—see [18] for a recent review.
Recently, experiments in optical traps have measured
the optimal mean time for a diffusing Brownian parti-
cle to reach a target under resetting [19,20].

Diffusion with stochastic resetting has the appealing
feature that many properties may be analysed exactly.
Mostly, this has been carried out in one spatial dimen-
sion [14] but one can easily extend some results to
higher spatial dimensions [21]. Typically, one focusses
on the mean time for a searcher to find a target at
which point the searcher is absorbed. Some works have
considered multiple targets [22–26]. However, in some
applications it may happen that there are a number of
targets, distributed in some manner, and the goal is to
locate all of the targets. A real-world context is that
of proteins searching for DNA lesions [27]. DNA lesions
need to be located by proteins quickly to be fixed, If
there are many DNA lesions and proteins are success-
fully finding just one of them, then the bulk of the tissue
will remain damaged so a successful search must try to
locate them all. Moreover, if the tissue has been exposed
to a large dose of ionising radiation which creates the
DNA lesions, the lesions may exist in clusters [28–30].
To address the problem of locating each and every one
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of a cluster of targets, the logical first step is to consider
a searcher looking for two targets, rather than just one.

In this paper, inspired by the problem of locating
all of a cluster of targets, we consider the problem of
diffusion with resetting with a single searcher and the
mean time to locate multiple targets in one dimension.
We find exact expressions for the mean time to multi-
ple absorption. An interesting emergent effect is that
the presence of multiple targets combined with reset-
ting after locating each of them, can lead to a reduction
in the mean time to find a single target. This counter-
intuitive result illustrates that co-operative effects may
arise from having a cluster of targets to find.

The paper is organised as follows. In Sect. 2 we define
the model beginning with two targets on either side of
a resetting site and set up the formalism for the compu-
tation of mean time to double absorption. In Sect. 3 we
present results for the Laplace transform of the survival
probability and the mean time to double absorption.
In Sect. 4 we generalise these results to an arbitrary
number of targets and present a recursive formula for
the mean time to multiple absorptions. In Sect. 5 we
conclude with some comments on how the model may
be improved with respect to the real-world problem of
modelling proteins locating DNA lesions.

2 Model definition: one searcher, two
targets

We consider a diffusive particle (searcher) with diffu-
sion constant D moving on a one-dimensional lattice.
With rate r the searcher is reset instantaneously to the
origin. We consider one target at xl < 0 and the other
at xr > 0. When the searcher touches a target for the
first time, the target is absorbed and the searcher is
instantaneously restarted at the origin. It is important
to note that once either xr or xl is located, it is no longer
an absorbing target i.e. if the searcher touches the tar-
get again, the searcher is not restarted. The search is
completed when both targets have been located.

We note that a related problem of diffusion with
resetting on a one-dimensional domain with absorbing
boundaries has been considered in [23,31] where the
statistics of the time to be absorbed by either bound-
ary were considered.

Our goal is to find the mean time to find both targets
(mean time to double absorption, MTDA). For usual
first passage problems there are a variety of approaches
to calculating survival probabilities and mean first-
passage times: forward Fokker–Planck equation, back-
ward Fokker Planck equation and renewal equations
(see e.g. [18,32,33]). Here we find it most convenient
to use the first approach.

There are three relevant survival probability densities
to consider:
q(x, t): the probability density of finding the searcher
at position x, time t with it not having touched either
xr or xl.

qr(x, t): the probability density for the searcher to be
at position x at time t and it having touched the target
at xr but not xl.
ql(x, t): the probability density for the searcher to be at
position x at time t and it having touched the target at
xl but not xr.

The survival probability density, q(x, t), satisfies the
forward master equation, in which the spatial variable
x is the position after time t:

∂q(x, t)
∂t

= −rq(x, t) + D
∂2q(x, t)

∂x2

+r

[∫ xr

xl

dx q(x, t)
]

δ(x), (1)

with boundary conditions,

q(xl, t) = q(xr, t) = 0. (2)

The initial condition is

q(x, 0) = δ(x) , (3)

since the searcher begins at the origin at t = 0.
The first term on the right-hand side of (1) represents

a loss of probability at x due to resetting and the third
term on the right-hand side indicates a gain of proba-
bility at the origin due to resetting from all x within
the domain. The boundary conditions (2) correspond
to absorption of the searcher when it touches xr or xl.
One can write down analogous but more involved equa-
tions for qr(x, t) and ql(x, t), but as we shall see we do
not need to explicitly compute these quantities.

The rate at which the search is completed when the
second of the targets is found (with one target already
having been found) is the sum of the rate of locating
xl once xr already been found and the rate of locating
xr once xl has already been found. These two rates are
given by the diffusive currents from qr at xl and from ql

at xr, respectively. Thus, the rate at which the second
of the targets is located, and the search completed, can
be written as

F (t) = D
∂qr(x, t)

∂x

∣∣∣
x=xl

− D
∂ql(x, t)

∂x

∣∣∣
x=xr

. (4)

Now the rate of locating the final target may also
be written as the negative rate of change of the total
survival probability, Qtot(t),

F (t) = −∂Qtot(t)
∂t

(5)

where

Qtot(t)=

∫ ∞

xl

dx qr(x, t)+

∫ xr

−∞
dx ql(x, t)+

∫ xr

xl

dx q(x, t).

(6)
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is the total probability that the searcher has not yet
touched both targets. Note that this survival probability
contains three terms: the probability of having touched
xr but not xl; the probability of having touched xl but
not xr; and the probability of having touched neither
target. The limits on the integrals on the rhs of (6) are
distinct because for each survival probability density
the allowed x domain is different e.g. for qr(x, t), x can
vary from xl to ∞ since once xr has been touched it is
no longer absorbing.

To obtain the MTDA, the standard approach for
mean first passage time calculations would be to aver-
age the time to double absorption over the rate of
absorption, F (t), to obtain

T2 =
∫ ∞

0

dt tF (t) =
∫ ∞

0

dtQtot(t) , (7)

after integrating by parts, assuming the survival proba-
bilities decay faster than 1/t. We use the notation T2 to
emphasize that it is the mean time to find both targets.

Defining the Laplace transforms of the survival prob-
abilities as

q̃(x, s) =
∫ ∞

0

dt e−stq(x, t) (8)

q̃r(x, s) =
∫ ∞

0

dt e−stqr(x, t) (9)

q̃l(x, s) =
∫ ∞

0

dt e−stql(x, t) , (10)

equation (7) can be written

T2 =

∫ ∞

xl

dx q̃r(x, 0) +

∫ xr

−∞
dx q̃l(x, 0) +

∫ xr

xl

dx q̃(x, 0).

(11)

The standard approach would therefore be to compute
the Laplace transforms (8), through which the MTDA
will ultimately be found.

To shorten the calculation, we will take advantage of
the known result for T1(Xr), the mean time to absorp-
tion for diffusion under resetting to the origin with a
single target at Xr [14],

T1(Xr) =
1
r
(eα|Xr| − 1). (12)

For our case the MTDA, T2(xl, xr), can be written
in terms of the probabilities Pr, Pl to find the right,
left target first, the mean times Tr, Tr to find the corre-
sponding target, conditioned on that target being found
first, and the mean time to find a single target, once the
other target has been eliminated

T2(xr, xl) = Pr [Tr + T1(xl)] + Pl [Tl + T1(xr)]
(13)

= τ + PrT1(xl) + PlT1(xr) (14)

where we have defined

τ = PrTr + PlTl, (15)

which is the mean first passage time to either of the
targets at xr, xl. We note that Pr, Pl are referred to in
the literature as splitting probabilities and have been
studied in [23,34]. The relation (15) was used in [23].
Thus (14) reads that the mean time to double absorp-
tion is the mean time to the first absorption plus the
average of the mean time for the second absorption
weighted according to the probabilities of which absorp-
tion occurs first. The quantities τ , Pr, Pl appearing in
(14) only require the knowledge of q̃(x, 0). To see this
note that

τ =
∫ ∞

0

dt

∫ xr

xl

dx q(x, t) =
∫ xr

xl

dx q̃(x, 0) (16)

and Pl is given by the integral of the absorption rate at
target xl

Pl =
∫ ∞

0

dtD
∂q(x, t)

∂x

∣∣∣
xl

= D
∂q̃(x, 0)

∂x

∣∣∣
xl

. (17)

Similarly,

Pr = −
∫ ∞

0

dtD
∂q(x, t)

∂x

∣∣∣
xr

= −D
∂q̃(x, 0)

∂x

∣∣∣
xr

. (18)

Our task is therefore to compute q̃(x, 0). For com-
pleteness we compute in the appendix the full Laplace
transform q̃(x, s).

3 Exact expressions for Laplace transform
of survival probability and MTDA

3.1 Laplace transform of survival probability q̃(x, s)

The Laplace transform of Eq. (1) is

[
q(x, t)e−st

]∞
0

+ sq̃(x, s) = −rq̃(x, s) + D
∂2q̃(x, s)

∂x2

+r

[∫ xr

xl

dx q̃(x, s)
]

δ(x). (19)

Rearranging yields

− (r + s)q̃(x, s) + D
∂2q̃(x, s)

∂x2
= −Eδ(x), (20)

where

E = 1 + r

[∫ xr

xl

dx q̃(x, s))
]

. (21)
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In the appendix we give details of the solution of (20,
21) for q̃(x, s). Here we present the result for q̃(x, 0),
which we use in the following,

q̃(x, 0) =
sinhα0xr sinh α0(x − xl)

α0D(sinh α0xr − sinhα0xl)
for x < 0

(22)

q̃(x, 0) =
sinhα0xl sinhα0(x − xr)

α0D(sinh α0xr − sinhα0xl)
for x > 0,

(23)

where

α0 =
( r

D

)1/2

. (24)

3.2 Mean time to double absorption, T2

We now put everything together to obtain an expression
for the mean time to double absorption (MTDA) using
(14). First we compute τ , the mean time to absorb the
first target, from the formula (16) using expressions (22,
23) to obtain

τ =
1
r

[
sinhα0(xr − xl)

sinh α0xr − sinh α0xl
− 1

]
. (25)

This expression is in agreement with Eq. (15) of [23].
One can check that the limits xr → ∞ and xl → −∞
recover (12).

We also require the following expressions

∂q̃(x, 0)
∂x

∣∣∣
x=xr

=
sinh α0xl

D(sinh α0xr − sinhα0xl)
(26)

∂q̃(x, 0)
∂x

∣∣∣
x=xl

=
sinh α0xr

D(sinh α0xr − sinhα0xl)
, (27)

which yield

Pr =
− sinh α0xl

(sinh α0xr − sinhα0xl)
(28)

Pl =
sinhα0xr

(sinh α0xr − sinhα0xl)
. (29)

These expressions are in agreement with equations (31,
32) of [23].

We then obtain from using (14), after simplification,

T2

=
1

r

(
sinh2 α0xr+sinh2 α0xl

sinhα0xr− sinhα0xl
+coshα0xr+coshα0xl−2

)

(30)

Expression (30) is the main result of this section.
One can check that as xr → 0 one obtains

T2 → 1
r

(
e−α0xl − 1

)
(31)

Fig. 1 Plots of mean time to double absorption with D =
1, xl = −1 and xr = 1. There is an obvious point at which
MTDA is minimised. It is at this value of r that the resetting
rate is optimised

which recovers the mean time to absorption under
stochastic resetting for a single target at xl (12). The
reason is that as xr → 0 (or xl → 0) one target is imme-
diately located and eliminated by the searcher start-
ing from the origin. Then the searcher effectively starts
again from origin at t = 0 to search for a single target.

We have also checked (30) by the longer route of com-
puting q̃r(x, 0), q̃l(x, 0) and using formulas (7), (6) and
found perfect agreement.

3.3 Dependence of MTDA on r

Plots of Eq. (30) with T plotted against both α0 and
r (with parameter values D = 1, xl = −1 and xr = 1)
exhibit the expected features (Fig. 1):

123



Eur. Phys. J. B (2021) 94 :228 Page 5 of 9 228

(i) MTDA tends to infinity as the resetting increases
as the searcher does not have sufficient time to dif-
fuse far enough to find a target between resets and
therefore will never find either target.

(ii) MTDA tends to infinity as the resetting rate tends
to zero. This is because, after having found the first
target (inevitable given the searcher is sandwiched
between the two targets, and there is no resetting),
the system reduces to the well-studied system of one
diffusive particle searching in 1D for one fixed target
without resetting [14]. In this system, the mean time
to absorption diverges.

(iii) There is a turning point at which MTDA is min-
imised (see Fig. 1b). The value for r at this mini-
mum is the optimal value for r; for this set of param-
eters optimal r is � 2.03 for which MTDA is � 2.15.

One can ask what is the optimal resetting rate i.e. the
value of r that minimises (30). For the case of a single
target at Xr it was found that there is a unique mini-
mum value, which is most neatly expressed in terms of
the variable γ = Xrα0 which is the ratio of distance to
target over the typical length diffused between resets.
For the two-target case considered here, the problem is
more complicated since there are two lengths xr, |xl|.
The simplest case to consider is |xl| = xr where again
we can express the minimisation in terms of a single
variable

γ = xrα0. (32)

Equating the derivative of (30) with respect to r to zero,
yields the following transcendental equation

3(γ − 2) exp(γ) − (γ + 2) exp(−γ) + 8 = 0. (33)

The unique non-zero solution is γ = 1.42433, to be com-
pared to γ = 1.59362 for the case of a single target at
xr [14]. For the case D = 1, xr = 1 this equates to an
optimal resetting rate r = 2.02872, which is in agree-
ment with Fig. 1b). The fact that the optimal value of
γ (and consequently of r) is lower for double absorp-
tion than for a single target is easy to understand. In
the case of two equidistant targets, it would be optimal
to have zero resetting rate up until the first target is
found and then adopt the optimal resetting rate for a
single target search. This suggests that a lower constant
resetting rate is optimal overall.

3.4 Dependence of MTDA on xr

We now turn to the dependence of the MTDA on the
positions of the targets

Plotting T against xr (again with arbitrary parame-
ters D = 1, xl = −1 and r = 1) produces a surprising
result (Fig. 2). Whilst the plot exhibits the expected
feature of a divergent MTDA as xr tends to infinity,
the position of the turning point is unexpected. With
the target at xr able to exist at any point xr > 0 and the
target at xl fixed at xl = −1, naively one might assume

Fig. 2 Mean time to double absorption plotted against xr,
with D = 1, r = 1 and xl = −1. The minimum occurs at
xr = 0.289

that the MTDA would be minimised when xr = 0. In
this scenario, xr would be found immediately, instantly
resetting the system followed by a search for xl (essen-
tially, this scenario is only a search for one target, xl).
However, placing xr further from xl = −1 actually
reduces the MTDA. There exists a kind of cooperative
effect in which the existence of a second target makes
the search for the first target quicker.

The reason for this lies in the fact that the searcher is
reset to the origin once it finds a target. Therefore hav-
ing a target at xr > 0 actually cuts off some trajectories
that are moving away from xl. However, placing xr too
far from the origin negates the cooperative effect. If xr

becomes too large, the time taken to find xr increases
such that it cancels out the benefit from the cooperative
effect. Thus there exists an optimum value for xr.

To check that cooperative effect between targets
always occurs one can compute

∂T2

∂xr

∣∣∣
xr=0

= −α0

r
. (34)

Thus, there is a decrease in T2, on increasing xr from
zero, for all parameter values.

We now consider the value of xr > 0 that minimises
the MTDA given a fixed xl < 0. Setting the deriva-
tive of (30) with respect to xr to zero yields a quartic
equation for η ≡ eα0xr :

(η2−1)2+4 sinh(α0|xl|)η(η2 − 1)−4 sinh2(α0|xl|) = 0.
(35)

The form of this equation implies that for η > 1 (which
corresponds to xr > 0) there is always a unique solu-
tion. Thus, there is a unique optimal value x∗

r of xr.
We can obtain the behaviour of x∗

r in the two limiting
cases where α0|xl| is either large or small. The quan-
tity α0|xl| is the ratio of the distance to the left target
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from the resetting site to the typical distance diffused
between resets [14].

For α0|xl| � 1

eα0x∗
r �

(
eα0|xl|

2

)1/3

, (36)

so

x∗
r � |xl|

3
. (37)

Also the probability of locating the right target first is

Pr � 1 − 1
21/3

e−2α0|xl|/3 (38)

For α0|xl| � 1

(
eα0x∗

r − 1
)

�
(
21/2 − 1

)
sinhα0|xl|, (39)

so

x∗
r �

(
21/2 − 1

)
|xl|. (40)

Also the probability of locating the right target first is

Pr � 2−1/2 = 0.7071 . . . (41)

It is interesting to note that in both limiting cases
the optimal distance of the right target is less than
the distance to the left target, by simple factors of 1/3
for α0|xl| � 1 and 0.4142 . . . for α0|xl| � 1. In addi-
tion, the probability of locating the right target first is
greater than one half in both cases. Thus in its opti-
mal position the right target effectively cuts off errant
trajectories.

4 Generalisation to multiple targets

Here we outline how the results may be generalised to
an arbitrary number of targets on the real line. So far we
have considered two targets either side of the resetting
position, the origin. The result for two targets on the
same side, say at positions xr1 > 0 and xr2 > xr1 is
simply

T2(xr1 , xr2) = T1(xr1) + T1(xr2), (42)

i.e. it is the mean time to locate the nearest target plus
the mean time to find the furthest target. For the case
of two targets to the right of the origin, xr1 > 0 and
xr2 > xr1 and one to the left xl < 0, using the same

logic as for (14), the mean time to find all three targets
is

T3(xl, xr1 , xr2) = τ(xl, xr1)+Pr1T2(xl, xr2)+PlT2(xr1 , xr2).

(43)

Equation (43) states that the mean time to triple
absorption is equal to the mean time to the first absorp-
tion plus the average of the mean time for the remaining
double absorption weighted according to the probabili-
ties of which absorption occurs first.

In this way, one can recursively write down expres-
sions for the mean time to absorb any number of tar-
gets. Specifically, for m targets to the left of the origin
and n targets to the right the expression reads

Tm+n(xlm , . . . xl1 , xr1 , . . . , xrn
) = τ(xl, xr1)

+Pr1(xl1 , xr1)Tn+m−1(xlm , . . . xl1 , xr2 , . . . , xrn
)

+Pl1(xl1 , xr1)Tn+m−1(xlm , . . . xl2 , xr1 , . . . , xrn
),
(44)

where Pr1(xl1 , xr1) is now the probability of first finding
the target on the right of the pair of closest targets on
either side of the origin.

5 Conclusion

In this paper, we have studied mean times for a dif-
fusive searcher, under resetting to a fixed position, to
locate all of multiple targets. We have presented the
exact expression (30) for two targets in one dimension
and shown how to generalise to an arbitrary number of
targets on the real line (44).

A perhaps surprising result is that the presence of
multiple targets can actually reduce the time to find
a single target. In the case of two targets we have
obtained expressions for the optimal position of the sec-
ond target which minimises the time to locate both tar-
gets. Although seemingly counter-intuitive, the effect is
a result of the searcher being returned to the origin once
a target has been located.

The study was motivated by the problem of healing
of lesions on DNA. For this purpose, the model we con-
sider is necessarily a crude simplification where each
event of disassociation/re-association from the DNA
is considered a reset of the system and the resetting
instantaneously occurs at a single resetting site. In real-
ity there are many possible processes for the transloca-
tion of proteins between sites e.g. jumping, hopping,
intersegment transfer and sliding are commonly dis-
cussed [5]. With the emergence of single-molecule meth-
ods, it has become possible to observe the motion of
proteins at an individual molecule level [35], which may
inform modelling. An obvious improvement to be made
to the resetting dynamics is to more faithfully model
a distribution of binding sites (for resetting to) and to
include a delay in the reset process. A cluster of target
sites may also have some specific structure. Moreover,
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the mechanism via which DNA is physically repaired is,
itself, not a straightforward process. There exist mul-
tiple types of DNA repair [36] such as nucleotide exci-
sion repair, mismatch repair, homologous recombina-
tion. It is also possible that the proteins that search for,
and are able to sense, DNA lesions are involved in the
repair process as well as the search process. This would
mean that, after having located a target site, rather
than being released back into the system to search for
another target, a protein may stay bound to the target
site [37]. Finally, whether searching for a binding site
for gene transcription or searching for a DNA lesion in
order to trigger the repair process, there are typically
multiple searchers looking for multiple targets.

Thus, there are a plethora of future modifications
that can be made to the basic model we study. Encour-
agingly, some studies of diffusion with resetting have
begun to explore such details, for example, including
a resetting distribution [15], including dynamics in the
absorption process [38], including multiple searchers in
the analysis [8], and adding a delay to the reset process
[17,39–42].

Acknowledgments GRC acknowledges the Higgs Centre
for Theoretical Physics where this work began as an MSc
project.

Author contributions

GRC designed and carried out research and drafted
sections of the paper. MRE designed and carried out
research and wrote the paper.

Data Availability Statement This manuscript has no
associated data or the data will not be deposited. [Authors’
comment: This paper has no associated data. The paper is
theoretical and self-contained.]

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to
the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this arti-
cle are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statu-
tory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A: Calculation of q̃(x, s)

In this appendix, we solve Eq. (20) self-consistently. As men-
tioned in the main text there are number of approaches one
can take; here we choose to use the forward master equation.

For x < 0 the solution of the homogeneous equation is

q̃(x, s) = ae−αx + beαx (A.1)

and for x > 0

q̃(x, s) = ce−αx + deαx (A.2)

where

α2 =
(r + s)

D
(A.3)

and a, b, c, d are constants to be determined from the
boundary conditions. The boundary conditions q̃(xl, s) =
q̃(xr, s) = 0 give

0 = ae−αxl + beαxl (A.4)
0 = ce−αxr + deαxr . (A.5)

Continuity of q̃(x, s) at x = 0 yields

a + b = c + d, (A.6)

and the discontinuity in the derivative, obtained by inte-
grating over the delta function,

D

[
∂q̃(x, s)

∂x

]0+

0−
= −E , (A.7)

implies

− c + d + a − b = − E

αD
. (A.8)

There are now four simultaneous equations for a, b, c, d
interms of E, the solution of which is

a =
E

2αD
e2αxl

(
1 − e2αxr

e2αxr − e2αxl

)
(A.9)

[1ex]b =
−E

2αD

(
1 − e2αxr

e2αxr − e2αxl

)
(A.10)

[1ex]c =
E

2αD
e2αxr

(
1 − e2αxl

e2αxr − e2αxl

)
(A.11)

[1ex]d =
−E

2αD

(
1 − e2αxl

e2αxr − e2αxl

)
(A.12)

The self-consistent solution for E is found using (21)

E =
(r + s)(eαxr + eαxl)

r(eα(xr+xl) + 1) + s(eαxr + eαxl)
. (A.13)

Case s = 0

In the case s = 0, which we will consider from now on, the
expression for E simplifies to

E =
(eα0xr + eα0xl)

eα0(xr+xl) + 1
, (A.14)

where

α0 =
( r

D

)1/2

. (A.15)
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Substituting E in to a, b, c, d then yields

a = − eα0xl sinh α0xr

2α0D(sinh α0xr − sinh α0xl)
(A.16)

b =
e−α0xl sinh α0xr

2α0D(sinh α0xr − sinh α0xl)
(A.17)

c = − eα0xr sinh α0xl

2α0D(sinh α0xr − sinh α0xl)
(A.18)

d =
e−α0xr sinh α0xl

4α0D(sinh α0xr − sinh α0xl)
. (A.19)

Hence, the expression for q̃(x, 0) reads

q̃(x, 0) =
sinh α0xr sinh α0(x − xl)

α0D(sinh α0xr − sinh α0xl)
for x < 0

(A.20)

q̃(x, 0) =
sinh α0xl sinh α0(x − xr)

α0D(sinh α0xr − sinh α0xl)
for x > 0.

(A.21)
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