Skip to main content
Log in

Nonlinear electronic transport in nanoscopic devices: nonequilibrium Green’s functions versus scattering approach

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the nonlinear elastic quantum electronic transport properties of nanoscopic devices using the nonequilibrium Green’s function (NEGF) method. The Green’s function method allows us to expand the I-V characteristics of a given device to arbitrary powers of the applied voltages. By doing so, we are able to relate the NEGF method to the scattering approach, showing their similarities and differences and calculate the conductance coefficients to arbitrary order. We demonstrate that the electronic current given by NEGF is gauge invariant to all orders in powers of V, and discuss the requirements for gauge invariance in the standard density functional theory (DFT) implementations in molecular electronics. We also analyze the symmetries of the nonlinear conductance coefficients with respect to a magnetic field inversion and the violation of the Onsager reciprocity relations with increasing source-drain bias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Löfgren, C.A. Marlow, I. Shorubalko, R.P. Taylor, P. Omling, L. Samuelson, H. Linke, Phys. Rev. Lett. 92, 046803 (2004)

    Article  ADS  Google Scholar 

  2. C.A. Marlow, R.P. Taylor, M. Fairbanks, I. Shorubalko, H. Linke, Phys. Rev. Lett. 96, 116801 (2006)

    Article  ADS  Google Scholar 

  3. D.M. Zumbühl, C.M. Marcus, M.P. Hanson, A.C. Gossard, Phys. Rev. Lett. 96, 206802 (2006)

    Article  ADS  Google Scholar 

  4. R. Leturcq, D. Sánchez, G. Götz, T. Ihn, K. Ensslin, D.C. Driscoll, A.C. Gossard, Phys. Rev. Lett. 96, 126801 (2006)

    Article  ADS  Google Scholar 

  5. L. Angers, E. Zakka-Bajjani, R. Deblock, S. Guéron, H. Bouchiat, A. Cavanna, U. Gennser, M. Polianski, Phys. Rev. B 75, 115309 (2007)

    Article  ADS  Google Scholar 

  6. J. Wei, M. Shimogawa, Z. Wang, I. Radu, R. Dormaier, D.H. Cobden, Phys. Rev. Lett. 95, 256601 (2005)

    Article  ADS  Google Scholar 

  7. A. Nitzan, M.A. Ratner, Science 300, 1384 (2003)

    Article  ADS  Google Scholar 

  8. M. Büttiker, J. Phys.: Condens. Matter 5, 9361 (1993)

    Article  ADS  Google Scholar 

  9. T. Christen, M. Büttiker, Europhys. Lett. 35, 523 (1996)

    Article  ADS  Google Scholar 

  10. D. Sánchez, M. Büttiker, Phys. Rev. Lett. 93, 106802 (2004)

    Article  ADS  Google Scholar 

  11. M.L. Polianski, M. Büttiker, Phys. Rev. Lett. 96, 156804 (2006)

    Article  ADS  Google Scholar 

  12. M.L. Polianski, M. Büttiker, Phys. Rev. B 76, 205308 (2007)

    Article  ADS  Google Scholar 

  13. B. Wang, J. Wang, H. Guo, J. Appl. Phys. 86, 5094 (1999)

    Article  ADS  Google Scholar 

  14. Y. Xue, S. Datta, M.A. Ratner, Chem. Phys. 281, 151 (2002)

    Article  Google Scholar 

  15. B. Spivak, A. Zyuzin, Phys. Rev. Lett. 93, 226801 (2004)

    Article  ADS  Google Scholar 

  16. E. Deyo, B. Spivak, A. Zyuzin, Phys. Rev. B 74, 104205 (2006)

    Article  ADS  Google Scholar 

  17. J.S. Lim, D. Sánchez, R. López, Phys. Rev. B 81, 155323 (2010)

    Article  ADS  Google Scholar 

  18. P.S. Damle, A.W. Ghosh, S. Datta, Phys. Rev. B 64, 201403(R) (2001)

    Article  ADS  Google Scholar 

  19. J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 245407 (2001)

    Article  ADS  Google Scholar 

  20. F. Evers, F. Weigend, M. Koentopp, Phys. Rev. B 69, 235411 (2004)

    Article  ADS  Google Scholar 

  21. S.H. Ke, H.U. Baranger, W. Yang, Phys. Rev. B 70, 085410 (2004)

    Article  ADS  Google Scholar 

  22. M. Koentopp, K. Burke, F. Evers, Phys. Rev. B 73, 121403(R) (2006)

    Article  ADS  Google Scholar 

  23. N.D. Lang, Phys. Rev. B 52, 5335 (1995)

    Article  ADS  Google Scholar 

  24. P. Hyldgaard, Phys. Rev. B 78, 165109 (2008)

    Article  ADS  Google Scholar 

  25. D.I. Golosov, Y. Gefen, Phys. Rev. B 74, 205316 (2006)

    Article  ADS  Google Scholar 

  26. S.E. Nigg, R. Lopez, M. Büttiker, Phys. Rev. Lett. 97, 206804 (2006)

    Article  ADS  Google Scholar 

  27. R. Landauer, in Nonlinearity in Condensed Matter, edited by R. Bishop et al. (Springer, Berlin, 1987)

  28. H. Bruus, K. Flensberg, Many-Body Quantum Theory in Condensed Matter Physics: An Introduction (Oxford University Press, Oxford, 2004)

  29. Z.-S. Ma, J. Wang, H. Guo, Phys. Rev. B 57, 9108 (1998)

    Article  ADS  Google Scholar 

  30. I.L. Aleiner, P.W. Brouwer, L.I. Glazman, Phys. Rep. 358, 309 (2002)

    Article  ADS  Google Scholar 

  31. A. Hernández, V.M. Apel, F.A. Pinheiro, C.H. Lewenkopf, Physica A 385, 148 (2007)

    Article  ADS  Google Scholar 

  32. L. DiCarlo, C.M. Marcus, J.S. Harris, Phys. Rev. Lett. 91, 246804 (2003)

    Article  ADS  Google Scholar 

  33. M. Switkes, C.M. Marcus, K. Campman, A.C. Gossard, Science 283, 1905 (1999)

    Article  ADS  Google Scholar 

  34. P.W. Brouwer, Phys. Rev. B 63, 121303(R) (2001)

    Article  ADS  Google Scholar 

  35. M. Martínez-Mares, C.H. Lewenkopf, E.R. Mucciolo, Phys. Rev. B 69, 085301 (2004)

    Article  ADS  Google Scholar 

  36. Y. Meir, N.S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992)

    Article  ADS  Google Scholar 

  37. H. Haug, A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer, New York, 1996)

  38. M. Koentopp, C. Chang, K. Burke, R. Car, J. Phys.: Condens. Matter 20, 083203 (2008)

    Article  ADS  Google Scholar 

  39. G. Stefanucci, C.-O. Almbladh, Europhys. Lett. 67, 14 (2004)

    Article  ADS  Google Scholar 

  40. M. Cini, Phys. Rev. B 22, 5887 (1980)

    Article  ADS  Google Scholar 

  41. M. Büttiker, IBM J. Res. Dev. 32, 317 (1988)

    Article  Google Scholar 

  42. D.S. Fisher, P.A. Lee, Phys. Rev. B 23, 6851 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  43. L. Onsager, Phys. Rev. 38, 2265 (1931)

    Article  ADS  MATH  Google Scholar 

  44. H.B.G. Casimir, Rev. Mod. Phys. 17, 343 (1945)

    Article  ADS  Google Scholar 

  45. M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986)

    Article  ADS  Google Scholar 

  46. A.D. Benoit, S. Washburn, C.P. Umbach, R.B. Laibowitz, R.A. Webb, Phys. Rev. Lett. 57, 1765 (1986)

    Article  ADS  Google Scholar 

  47. A. Yacoby, M. Heiblum, D. Mahalu, H. Shtrikman, Phys. Rev. Lett. 74, 4047 (1995)

    Article  ADS  Google Scholar 

  48. A. Yacoby, R. Schuster, M. Heiblum, Phys. Rev. B 53, 9583 (1996)

    Article  ADS  Google Scholar 

  49. A.L. Yeyati, M. Büttiker, Phys. Rev. B 52, R14 360 (1995)

    Article  Google Scholar 

  50. I.B. Levinson, Sov. Phys. J. Exp. Theor. Phys. 68, 1257 (1989)

    Google Scholar 

  51. A.R. Hernández, C.H. Lewenkopf, Phys. Rev. Lett. 103, 166801 (2009)

    Article  ADS  Google Scholar 

  52. D. Andrieux, P. Gaspard, J. Stat. Mech. P02006 (2007)

  53. D. Andrieux, P. Gaspard, J. Chem. Phys. 121, 6167 (2004)

    Article  ADS  Google Scholar 

  54. C. Mahaux, H.A. Weidenmüller, Shell-model Approach to Nuclear Reactions (North Holland Publishing Co., Amsterdam, 1969)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis R. Hernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández, A., Lewenkopf, C. Nonlinear electronic transport in nanoscopic devices: nonequilibrium Green’s functions versus scattering approach. Eur. Phys. J. B 86, 131 (2013). https://doi.org/10.1140/epjb/e2013-31089-1

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-31089-1

Keywords

Navigation