Skip to main content
Log in

Effective Heisenberg exchange integrals of diluted magnetic semiconductors determined within realistic multi-band tight-binding models

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Diluted magnetic semiconductors (DMS) like Ga1−x Mn x As are described by a realistic tight-binding model (TBM) for the (valence) bands of GaAs, by a Zener (J-)term modeling the coupling of the localized Mn-spins to the spins of the valence band electrons, and by an additional potential scattering (V-) term due to the Mn-impurities. We calculate the effective (Heisenberg) exchange interaction between two Mn-moments mediated by the valence electrons. The influence of the number of bands taken into account (6-band or 8-band TBM) and of the potential (impurity) scattering V-term is investigated. We find that for realistic values of the parameters the indirect exchange integrals show a long-range, oscillating (RKKY-like) behavior, if the V-term is neglected, probably leading to spin-glass behavior rather than magnetic order. But by including a V-term of a realistic magnitude the exchange couplings become short ranged and mainly positive allowing for the possibility of ferromagnetic order. Our results are in good agreement with available results of ab initio treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Žutić, J. Fabian, S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004)

    Article  ADS  Google Scholar 

  2. T. Jungwirth et al., Phys. Rev. B 72, 165204 (2005)

    Article  ADS  Google Scholar 

  3. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)

    Article  ADS  Google Scholar 

  4. L. Bergqvist, O. Eriksson, J. Kudrnovský, V. Drchal, P. Korzhavyi, I. Turek, Phys. Rev. Lett. 93, 137202 (2004)

    Article  ADS  Google Scholar 

  5. G. Bouzerar, T. Ziman, J. Kudrnovský, Europhys. Lett. 69, 812 (2005)

    Article  ADS  Google Scholar 

  6. T. Jungwirth, J. Sinova, J. Mašek, J. Kučera, A.H. MacDonald, Rev. Mod. Phys. 78, 809 (2006)

    Article  ADS  Google Scholar 

  7. K. Sato et al., Rev. Mod. Phys. 82, 1633 (2010)

    Article  ADS  Google Scholar 

  8. R. Bouzerar, G. Bouzerar, Europhys. Lett. 92, 47006 (2010)

    Article  ADS  Google Scholar 

  9. G. Bouzerar, R. Bouzerar, New J. Phys. 13, 023002 (2011)

    Article  ADS  Google Scholar 

  10. Y. Yildirim, G. Alvarez, A. Moreo, E. Dagotto, Phys. Rev. Lett. 99, 057207 (2007)

    Article  ADS  Google Scholar 

  11. A. Weiße, G. Wellein, A. Alvermann, H. Fehske, Rev. Mod. Phys. 78, 275 (2006)

    Article  ADS  MATH  Google Scholar 

  12. A. Liechtenstein, M. Katsnelson, V. Antropov, V. Gubanov, J. Magn. Magn. Mater. 67, 65 (1987)

    Article  ADS  Google Scholar 

  13. R. Bouzerar, G. Bouzerar, T. Ziman, Europhys. Lett. 78, 67003 (2007)

    Article  ADS  Google Scholar 

  14. A. Chakraborty, R. Bouzerar, G. Bouzerar, Eur. Phys. J. B 81, 405 (2011)

    Article  ADS  Google Scholar 

  15. J.M. Tang, M.E. Flatté, Phys. Rev. Lett. 92, 047201 (2004)

    Article  ADS  Google Scholar 

  16. J. Mašek, J. Kudrnovský, F. Máca, J. Sinova, A.H. MacDonald, R.P. Campion, B.L. Gallagher, T. Jungwirth, Phys. Rev. B 75, 045202 (2007)

    ADS  Google Scholar 

  17. M. Turek, J. Siewert, J. Fabian, Phys. Rev. B 78, 085211 (2008)

    Article  ADS  Google Scholar 

  18. J.P. Loehr, Phys. Rev. B 50, 5429 (1994)

    Article  ADS  Google Scholar 

  19. I. Vurgaftman, J.R. Meyer, Phys. Rev. B 64, 245207 (2001)

    Article  ADS  Google Scholar 

  20. J. Kudrnovský, I. Turek, V. Drchal, F. Máca, P. Weinberger, P. Bruno, Phys. Rev. B 69, 115208 (2004)

    Article  ADS  Google Scholar 

  21. J.R. Schrieffer, P.A. Wolff, Phys. Rev. 149, 491 (1966)

    Article  ADS  Google Scholar 

  22. P.W. Anderson, Phys. Rev. 124, 41 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  23. J. Mašek et al., Phys. Rev. Lett. 105, 227202 (2010)

    Article  ADS  Google Scholar 

  24. R.C. Myers, M. Poggio, N.P. Stern, A.C. Gossard, D.D. Awschalom, Phys. Rev. Lett. 95, 017204 (2005)

    Article  ADS  Google Scholar 

  25. M. Poggio, R.C. Myers, N.P. Stern, A.C. Gossard, D.D. Awschalom, Phys. Rev. B 72, 235313 (2005)

    Article  ADS  Google Scholar 

  26. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)

    Article  ADS  Google Scholar 

  27. B.K. Agrawal, P.S. Yadav, S. Kumar, S. Agrawal, Phys. Rev. B 52, 4896 (1995)

    Article  ADS  Google Scholar 

  28. T. Shimazaki, Y. Asai, J. Chem. Phys. 132, 224105 (2010)

    Article  ADS  Google Scholar 

  29. S. Sanvito, N.A. Hill, Phys. Rev. B 62, 15553 (2000)

    Article  ADS  Google Scholar 

  30. P. Bruno, J. Kudrnovský, V. Drchal, I. Turek, Phys. Rev. Lett. 76, 4254 (1996)

    Article  ADS  Google Scholar 

  31. M. Linnarsson, E. Janzén, B. Monemar, M. Kleverman, A. Thilderkvist, Phys. Rev. B 55, 6938 (1997)

    Article  ADS  Google Scholar 

  32. G. Bouzerar, Europhys. Lett. 79, 57007 (2007)

    Article  ADS  Google Scholar 

  33. S. Hilbert, W. Nolting, Phys. Rev. B 71, 113204 (2005)

    Article  ADS  Google Scholar 

  34. S. Barthel, G. Czycholl, G. Bouzerar, (2011), arXiv:1107.4694[cond-mat.str-el]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Barthel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barthel, S., Czycholl, G. & Bouzerar, G. Effective Heisenberg exchange integrals of diluted magnetic semiconductors determined within realistic multi-band tight-binding models. Eur. Phys. J. B 86, 11 (2013). https://doi.org/10.1140/epjb/e2012-30795-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30795-4

Keywords

Navigation