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Abstract—We study integrability cases for the multiple Loewner differential equation which gener-
ates conformal mappings from the upper half-plane H of the complex plane with multiple slits ontoH.
The research is reduced to constant, square root and exponential driving functions of the Loewner
equation. Moreover, conformal mappings from H minus symmetric circular curves emanating from
the joint point at the origin, onto H, are represented as solutions to the multiple Loewner equation.
The results supplement earlier descriptions for single slit mappings given by Kager, Nienhuis and
Kadanoff.
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1. INTRODUCTION

The Loewner differential equations remain to be a powerful tool in studying properties of univalent
functions. Let us focus on a version of such equations which is popular during last decades, see e.g.,
[1,Chapter 4] and references therein. For every simple curve Γ in the upper half-plane H = {z ∈ C :
Imz > 0}, the evolution of the conformal mapping g(·, t) taking H \ Γ[0, t] onto H is described by a
differential equation containing a continuous driving function λ = λ(t). Conversely, the differential
equation defines a growing collection of hulls. The general Loewner differential equation that we are
interested in is introduced in [1, Theorem 4.6].

Theorem A [1, p. 93] Suppose μt, t ≥ 0, is a one parameter family of nonnegative Borel
measures on R such that t �→ μt is continuous in the weak topology, and for each t, there is an
Mt < ∞ such that sup{μs(R) : 0 ≤ s ≤ t} < Mt and suppμs ⊂ [−Mt,Mt], s ≤ t. For each z ∈ H,
let g(z, t) denote the solution of the initial value problem

dg(z, t)

dt
=

∫

R

μt(du)

g(z, t) − u
, g(z, 0) = z. (1)

Let Tz be the supremum of all t such that the solution is well defined up to time t with g(z, t) ∈ H.
Let Ht = {z : Tz > t}. Then g(z, t) is the unique conformal transformation of Ht onto H such that
g(z, t) − z → 0 as z → ∞. Moreover, g(z, t) has the expansion

g(z, t) = z +
b(t)

z
+O

(
1

|z|2

)
, z → ∞. (2)

where b(t) =
∫ t
0 μs(R)ds.
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The expansion (2) is called the hydrodynamic normalization at infinity. An important example
μt = 2δλ(t) with the Dirac delta-function δ and a continuous function t �→ λ(t) from [0,∞) toR, presents
the standard Loewner differential equation

dg(z, t)

dt
=

2

g(z, t) − λ(t)
, g(z, 0) = z. (3)

Kager, Nienhuis and Kadanoff [2] found exact solutions of equations (3) in a few cases. The simplest
are ones in which the driving function has the form λ(t) = Ctα, α = 0, 1, 1/2. The constant C can
be scaled away when α = 0 and α = 1. For the special value α = 1/2, the multiplicative constant is
important in determining the solution form. If α = 0, then a constant driving function λ generates a
straight slit from λ ∈ R along a ray in H which is perpendicular to the real axis R, see also [1, p. 95]. If
α = 1, then a trace z(t) generated by the linear forcing λ = t is analytic for t > 0 and is perpendicular
to the real axis R at z = 0. This line of singularities moves outward to infinity while remaining within a
fixed distance of the real axis R. If α = 1/2 and λ(t) = C

√
t, C > 0, then the line of singularities is a ray

in H from 0 to infinity with a slope depending on C, see also [1, p. 96].
It is worth saying that Marshall and Rohde [3] proved that there is a constant C1 > 0 such that every

driving function λ in the Loewner equation (3) belonging to the class Lip(12) of the Hölder continuous
functions with exponent 1

2 , such that ||λ||1/2 < C1, generates a quasiconformal slit Γ in H which is
not tangential to the real axis. Conversely, they proved also that every quasiconformal slit in H non-
tangential to R is generated by a driving function λ ∈ Lip(12 ). Lind [4] showed that C1 = 4 is the best
possible constant in the Marshall–Rohde theorem [3].

Another forcing case which admits direct integrating for the Loewner equation (3) was proposed
in [5] when the driving function has the exponential form λ(t) = B(et − 1), B > 0. As in the case of
linear forcing, a trace z(t) generated by the exponential driving function is analytic for t > 0 and is
perpendicular to the real axis R at z = 0.

Note that it is shown by Earle and Epstein [6] that, for an analytic slit Γ, the generating driving
function λ in the Loewner equation is real analytic. Conversely, according to Lind and Tran [7], if a
driving function λ is real analytic on (0, t], then the generated slit Γ is also real analytic on (0, t].

In an opposite direction, we find driving functions for given traces of the Loewner equation. Such
a problem was solved in [8] and was generalized in [9] and [10] in the case of arcs close to a circular
arc in H or its power and that is tangential to the real axis R. It was proved that a driving function
λ generating a tangential circular arc of radius 1 belongs to the class Lip(13 ) of Hölder continuous
functions, λ(t) = 3α(t) + 2

√
−α(t)π where α = α(t) is an algebraic function satisfying the equation

α(3α + 4
√
−απ) = −6t, t ≥ 0. Contrary to the previous cases of slit domains in H, the driving function

λ(t) acts here on a finite set [0, T ) since at t = T the circular arc becomes a closed circumference which
bounds a hull that is a closed disk of positive area in H generated by λ on [0, T ].

A more general example of the function μt in the Loewner equation (1) is represented by a convex
combination of Dirac delta-functions multiplied by 2, μt = 2

∑n
k=1 μkδλk(t) with continuous non-

overlapping functions t �→ λk(t) from [0,∞) to R and positive numbers μ1, . . . , μn,
∑n

k=1 μk = 1. Such
a choice gives a generalized Loewner differential equation

dg(z, t)

dt
=

n∑
k=1

2μk

g(z, t) − λk(t)
, g(z, 0) = z. (4)

During last years, equation (4) attracted attention of mathematicians, see [11–17]. Instead of a hull
generated by a driving function λ in the Loewner equation (3), there appearn disjoint hulls corresponding
to n driving functions λ1, . . . , λn in the Loewner equation (4). It is curious to observe how does a single
trace Γ of (3) change when several new traces Γ2, . . . ,Γn influence its behavior according to (4). In this
paper, we consider integrability cases for (4) which have preceding examples mentioned above. One of
such attempts has been undertaken by Kager, Nienhuis and Kadanoff in [2] where the authors described
geometric properties of solutions to (4) with two constant driving functions λ1 = −1 and λ2 = 1 supplied
with two equal weights μ1 = μ2 =

1
2 .
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In the case of constant driving functions in (4) we present a general integral solution and describe
a behavior of two traces when n = 2, λ2 = −λ1 supplied with arbitrary positive weights μ1 and μ2,
μ1 + μ2 = 1, in (4).

Next, we revise a square root case of the driving function λ(t) = C
√
t examined in [2] and solve

the multiple Loewner equation (4) and describe asymptotical and geometrical trace properties for n = 2,
λ2(t) = −λ1(t) = A

√
t, A > 0, and μ1 = μ2 =

1
2 . Similarly, we revisit the exponential case of the driving

function λ(t) = B(et− 1) examined in [5] and solve the multiple Loewner equation (4) and describe trace
properties for n = 2, λ2(t) = −λ1(t) = Bet, B > 0, and μ1 = μ2 =

1
2 .

Finally, we continue treating a case of the circular arc tangential to the real axis which was considered
in [8]. Contrary to the circular slit Γ[0, t] with endpoints Γ(0) = 0 and Γ(t) = z(t) in [8], we deal with
the circular slit with symmetric endpoints (−Γ(t)) and Γ(t). Such a slit is thought of as a multiple slit
consisting of two circular slits Γ1[0, t] = (−Γ[0, t]) and Γ2[0, t] = Γ[0, t] and having the joint initial point
at the origin.

We prove that the inverse of the Christoffel–Schwarz integral solves the multiple Loewner equation
(4) with n = 2, μ1 = μ2 =

1
2 and driving functions λ1(t) and λ2(t) = −λ1(t), λ2(0) = λ1(0) = 0, that

belong to the class Lip(13).

The paper is organized as follows. In Section 2 we write an integral solution to equation (4) with
constant driving functions and, for n = 2 and different weights μ1, μ2, find asymptotical expansions as
t → 0 for both traces. This generalizes the description by Kager, Nienhuis and Kadanoff [2] made for
equal weights. In Section 3 we appeal to the multiple Loewner equation (4) withn = 2 and equal weights
μ1 = μ2 =

1
2 and square root and exponential driving functions. The solutions to (4) are studied in detail.

In Section 4 we apply the Christoffel–Schwarz integral to deduce an explicit solution to the multiple
Loewner equation (4) with driving functions generating two circular slits in H that are symmetric with
respect to the imaginary axis and emanate from the joint point at the origin. Both driving functions are
algebraic functions from the class Lip(13 ).

2. CONSTANT DRIVING FUNCTIONS

Theorem 1. Given n ∈ N, n > 1, a solution w = w(z, t) to the Cauchy problem for the multiple
Loewner differential equation (4) with constant real driving functions λk and positive numbers
μk, k = 1, . . . , n, λ1 < · · · < λn,

∑n
k=1 μk = 1, can be expressed as

w∫

z

dζ∑n
k=1 μk(ζ − λk)−1

= 2t, t ≥ 0, z, w ∈ H. (5)

The curvilinear integral (5) is uniquely determined along any path from z to w in H and does not
depend on the path.

Proof. Indeed, under assumptions of Theorem 1, variables w and t are separable in the Loewner
equation, and the equivalent equation

dw∑n
k=1 μk(ζ − λk)−1

= 2dt, w(z, 0) = z,

is solved as in (5). This completes the proof of Theorem 1. �

Examine carefully the model case n = 2. The solution behavior under translation property means that
the shift w(z, t) �→ w(z, t) + x, x ∈ R, is caused by the change (λ1, . . . , λn) �→ (λ1 + x, . . . , λn + x).
Therefore, without loss of generality, assume that (−λ1) = λ2 := λ > 0.

Proposition 1. If the multiple Loewner equation (4) with n = 2, 0 < μ1 := μ < 1, μ2 = 1− μ,
−λ1 = λ2 = λ > 0, generates two disjoint traces Γ1 and Γ2 for t ∈ [0, T ], T > 0, then its solution
w(·, t) maps H \ (Γ1 ∪ Γ2) onto H. The simple curves Γ1 and Γ2 are orthogonal to the real axis R

at z = −λ and z = λ, respectively.
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Proof. Integrate the multiple Loewner differential equation

dw

dt
=

2(1− μ)

w + λ
+

2μ

w − λ
=

2(w − λ(1− 2μ))

w2 − λ2
, w(z, 0) = 0,

and obtain a solution w = w(z, t) in the implicit form

(w − λ(1− 2μ))2 + 4λ(1 − 2μ)(w − λ(1− 2μ))− 8λ2μ(1− μ) log(w − λ(1− 2μ))

= 4t+ (z − λ(1− 2μ))2 + 4λ(1 − 2μ)(z − λ(1− 2μ))− 8λ2μ(1− μ) log(z − λ(1− 2μ)),

where the continuous branch of logarithm is such that log[(w − λ(1− 2μ))(z − λ(1− 2μ))−1] is real
when z − λ(1− 2μ) and w − λ(1− 2μ) are positive.

For t > 0, there are two curves Γ1 = Γ1[0, t] and Γ2[0, t] such that the solution w(·, t) maps the
domain H \ (Γ1 ∪Γ2) onto H and is extended continuously onto the closureH \ (Γ1 ∪ Γ2) of this domain.
The curves Γ1 and Γ2 emanate from (−λ) and λ, respectively, i.e., Γ1 = −λ and Γ2 = λ for t = 0. The
tips z = Γ1(t) and z = Γ2(t) of Γ1[0, t] and Γ2[0, t], respectively, correspond to w = −λ and w = λ,
respectively, under w = w(z, t). Derive a parametrization of Γ2 in terms of parameter t ≥ 0. Set
Γ2(t) = z(t), z(0) = λ, and apply the equality w(z(t), t) = λ, λ > 0, to get the implicit equation for
z = z(t)

4λ2μ2 + 8λ2μ(1− 2μ)− (z − λ(1− 2μ))2 − 4λ(1− 2μ)(z − λ(1− 2μ))

− 8λ2μ(1− μ) log
2λμ

z − λ(1− 2μ)
= 4t, t ≥ 0, z ∈ H ∪ {λ}. (6)

After differentiating, equation (6) generates the ordinary differential equation

z′(t) =
2(z(t) − λ(1− 2μ))

λ2 − z2(t)
, 0 < t ≤ T. (7)

Equation (7) has a singularity at t = 0. Find an asymptotical local expansion for z(t) near t = 0
where the denominator in (7) vanishes. That is why, it is reasonable to set

z(t) = λ+ a
√
t+ o(

√
t), t → 0.

Substitute this expansion in (7) and get the equation

a

2
√
t
= − 2μ

a
√
t
+ o(1), t → 0,

which gives the value of a, a = i2
√
μ. So z(t) = λ+ i2

√
μt+ o(

√
t), t → 0.

The curve Γ1 is generated by the constant driving function (−λ) with the weight (1− μ). The
parametrization of the curve Γ1 is found similarly. It corresponds to the parametrization of Γ2 after
changing λ �→ (−λ) and μ �→ (1− μ). This completes the proof of Proposition 1. �

The case of constant multiple forcing in Proposition 1 with equal weights μ = 1− μ = 1
2 was

considered earlier by Kager, Nienhuis and Kadanoff in [2] who obtained, in particular, equation (6) for
such weights. Note that both traces Γ1 and Γ2 in [2] tend to the imaginary half-axis as t → ∞ and
T = ∞. In our presentation we do not concern with analysis whether T is finite. Such a problem requires
essentially more efforts though it seems to be solvable both theoretically or by numerical experiments.

3. SQUARE ROOT AND EXPONENTIAL DRIVING FUNCTIONS

First, we are interested in the multiple Loewner differential equation with two square root driving
functions λ = ±A

√
t, A > 0, and equal weights μ1 = μ2 =

1
2 .

Theorem 2. A solution w = w(z, t) to the Cauchy problem for the multiple Loewner differential
equation

dw

dt
=

1

w +A
√
t
+

1

w −A
√
t
=

2w

w2 −A2t
, A > 0, w|t=0 = z, (8)
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can be implicitly expressed as

t =
1

A2 + 4
(w2 − z2+A2/2w−A2/2), t ≥ 0, z, w ∈ H, (9)

where the power branches are such that powers of z and w are positive when z and w are positive.
Proof. The multiple Loewner differential equation (8) is linear with respect to t. By a standard

procedure we arrive at the implicit solution form (9). It is directly verified that this function solves
equation (8) and the initial condition w|t=0 = z, which completes the proof of Theorem 2. �

Examine geometric properties of traces generated by equation (8).
Proposition 2. If the multiple Loewner equation (8) generates two traces Γ3 and Γ4, then

its solution w(·, t) maps H \ (Γ3 ∪ Γ4) onto H, where Γ3 and Γ4 are two rays emanating from the

origin under the angles (A2+2)π
A2+4

and 2π
A2+4

, respectively.

Proof. A solution to the multiple Loewner differential equation (8) is given by (9). For t > 0, there
are two curves Γ3 and Γ4 such that the solution w(·, t) maps H \ (Γ3 ∪ Γ4) onto H and is extended
continuously onto the closure H \ (Γ3 ∪ Γ4) of this domain. The curves Γ3 and Γ4 have to be symmetric
with respect to the imaginary axis and both of them emanate from the origin, i.e., Γ3 = Γ4 = 0 for
t = 0. Show that, given t > 0, Γ3 and Γ4 are straight segments with the tips z = Γ3(t) and z = Γ4(t)

of Γ3[0, t] and Γ4[0, t], respectively, which correspond to w = −A
√
t and w = A

√
t, respectively, under

w = w(z, t). Derive a parametrization of Γ4 in terms of parameter t ≥ 0. Set Γ4(t) = z(t), z(0) = 0, and
apply the equality w(z(t), t) = A

√
t, A > 0, in (9) to get the implicit equation for z = z(t),

t =
A2t

A2 + 4
− z2+A2/2

A2 + 4
(A

√
t)−A2/2

which gives the explicit form of z(t),

z(t) = (−1)
2

A2+42
4

A2+4A
A2

A2+4
√
t or z(t) = e

i 2π
A2+42

4
A2+4A

A2

A2+4
√
t.

So Γ4 is the ray mentioned in Proposition 2. To prove explicitly that Γ3 is symmetric to Γ4 with respect
to the imaginary axis, we have to change A �→ (−A) in the last equation and obtain that

z(t) = e
i (A

2+2)π

A2+4 2
4

A2+4A
A2

A2+4
√
t.

This completes the proof of Proposition 2. �

Note that both traces Γ3 and Γ4 tend to the imaginary half-axis as A → 0. The slope of the ray Γ4

decreases from π
2 to 0 as A increases from 0 to infinity.

Second, we call attention to the multiple Loewner differential equation with two exponential driving
functions λ = ±Bet, B > 0, and equal weights μ1 = μ2 =

1
2 .

Theorem 3. A solution w = w(z, t) to the Cauchy problem for the multiple Loewner differential
equation

dw

dt
=

1

w +Bet
+

1

w −Bet
=

2w

w2 −B2e2t
, B > 0, w|t=0 = z, (10)

can be implicitly expressed as

e−2t =

⎛
⎝B2

w∫

z

e
ζ2

2

ζ
dζ + e

z2

2

⎞
⎠ e−

w2

2 , t ≥ 0, z, w ∈ H. (11)

The curvilinear integral in (11) is uniquely determined along any path from z to w in H and does
not depend on the path.

Proof. After changing variables τ = e−2t, the multiple Loewner differential equation (10) is reduced
to the following equation

(w2τ −B2)dw = −wdτ, wτ=1 = z,
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which is linear with respect to t. By a standard procedure we arrive at the implicit solution form (11).
It is directly verified that this function solves equation (10) and the initial condition w|t=0 = z, which
completes the proof of Theorem 3. �

To describe traces generated by exponential driving functions, we need to denote the primitive given
in Theorem 3. Let

Φ(z) :=

z∫
eζ

2/2

ζ
dζ

be the primitive of 1
ze

z2/2 in the closure H \ {0} of H \ {0}.

Proposition 3. If traces Γ5 and Γ6 are generated by (10) for a given t > 0, then its solution
w(·, t) maps H \ (Γ5 ∪ Γ6) onto H, where Γ5[0, t] and Γ6[0, t] are two curves that are orthogonal to
the real axis at the points z = −B and z = B, respectively.

Proof. A solution w(·, t) to equation (10) is given by (11) and, for a given t > 0, it maps H \ (Γ5 ∪ Γ6)
onto H and is extended continuously onto the closure of this domain. The curves Γ5 and Γ6 have to be
symmetric with respect to the imaginary axis and they emanate from the points z = −B and z = B,
respectively, i.e., Γ5 = −B and Γ6 = B, respectively, for t = 0. Derive a parametrization of Γ6 in terms
of parameter t ≥ 0. Set Γ6(t) = z(t), z(0) = 0, and apply the equality

w(z(t), t) = Bet, B > 0,

in (11) to get the implicit equation for z = z(t),

e−2t = (B2Φ(Bet)−B2Φ(z) + ez
2/2)e−B2e2t/2.

Write down the imaginary part of this equation in the form Im(B2Φ(z)− ez
2/2) = 0 for all t ≥ 0 close

to 0. Differentiate this equality in t and obtain Im[(B2Φ′(z) − zez
2/2)z′(t)] = 0 or

Im
[(

B2

z
− z

)
ez

2/2z′(t)

]
= 0. (12)

Set z(t) = B + iαt+ o(t), t → 0 for α �= 0, argα ∈ (−π/2, π/2). Straightforward calculations
give the asymptotic expansion in (12) for t close to 0,

Im
[(

B2

z
− z

)
ez

2/2z′(t)

]
= Im[2α2eB

2
] + o(t) = 0, t → 0,

which implies that Im(α2) = 0 and so α is pure imaginary.

The case λ(t) = −Bet for Γ5 is treated similarly. This completes the proof of Proposition 3. �

4. MULTIPLE CIRCULAR TRACES

In the previous Sections, given driving functions in the multiple Loewner equation, we were looking
for generated traces. Now, we will solve an inverse problem. Namely, given multiple circular traces, we
will restore generating driving functions. Again, we will restrict ourselves to two circular traces in H

emanating from the origin and symmetric with respect to the imaginary axis. Moreover, we will concern
only circular traces that are tangential to the real axis. Without loss of generality, assume that the circle
radius is equal to 1.

Denote

Γ[0, t] = {z = i(1− eiϕ) : −ϕ0(t) ≤ ϕ ≤ ϕ0(t)}, 0 < ϕ0(t) < π.

We treat the circular arc Γ[0, t] as the union of two symmetric circular arcs Γ7[0, t] and Γ8[0, t] that are
tangential to R at z = 0,

Γ7[0, t] = Γ[0, t] ∩ {z ∈ C : Rez ≤ 0}, Γ8[0, t] = Γ[0, t] ∩ {z ∈ C : Rez ≥ 0}.
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Theorem 4. Conformal mappings w = g(·, t) : H \ Γ[0, t] → H having the hydrodynamic nor-
malization at infinity satisfy the multiple Loewner equation

dw

dt
=

1

w + λ
+

1

w − λ
=

2w

w2 − λ2
, w(z, 0) = z, z ∈ H,

with

λ = λ(t) = t
1
3

√
(6π)

2
3 − 6t

1
3 , 0 ≤ t <

π2

6
.

The inverse functions z = f(w, t) = g−1(w, t) are represented by

1/f(w, t) =
λ2

β2

1

w
+

1

2π
log

w + β

w − β
, w ∈ H,

with β = β(t) = 3
√
6πt.

Proof. Let z = f(w, t) map H conformally onto H \ Γ[0, t] and let f obey the hydrodynamic
normalization

f(w, t) = w − 2t

w
+O

(
1

w2

)
, w → ∞. (13)

Extend f(w, t) continuously on the closure H of H.
The inversion ζ = 1

z transforms H \ Γ[0, t] onto the lower half-plane (−H) slit along two symmetric
rays on the line {ζ : Imζ = −1

2}. This slit domain is the image of H under the Christoffel–Schwarz
integral

ζ(w) =

w∫

∞

s2 − λ2

s2 − β2

ds

s2
, 0 < λ < β,

where λ, β are subject to be determined. Change variables s �→ 1
p in this integral so that

ζ(w) =

1
w∫

0

1− λ2p2

1− β2p2
dp.

According to (13), the function ζ(w) has the asymptotic expansion

ζ(w) =
1

f(w, t)
=

[
w − 2t

w
+O

(
1

w2

)]−1

=
1

w
+

2t

w3
+O

(
1

w3

)
, w → ∞.

From the other side,

ζ(w) =

1
w∫

0

1− λ2p2

1− β2p2
dp =

1
w∫

0

[1 + (β2 − λ2)p2 +O(p3)]dp =
1

w
+

β2 − λ2

3

1

w3
+O

(
1

w4

)

as w → ∞. Compare the two last asymptotic expansions and find the first equation to determine a
relation between λ and β, β2 − λ2 = 6t. Evaluate the integral and find ζ(w),

ζ(w) =

1
w∫

0

1− λ2p2

1− β2p2
dp =

λ2

β2

1

w
+

β2 − λ2

2β3
log

w + β

w − β
.

Recall that ζ(w) transforms λ(t) into the endpoint of the slit along the line {ζ : Imζ = −1
2}. This

gives us the following equation

Imζ(λ) = Im
[
β2 − λ2

2β3
log

λ+ β

λ− β

]
=

β2 − λ2

2β3
arg

λ+ β

λ− β
=

λ2 − β2

2β3
(−π) = −1

2
.
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This is the second equation determining λ and β. The system of these two equations has the unique
solution (λ, β),

λ = λ(t) = t
1
3

√
(6π)

2
3 − 6t

1
3 , β = β(t) =

3
√
6πt.

It remains to comment that w = g(z, t) satisfies the multiple Loewner equation. In general, it is
clear after all the reasonings of the proof. However, we will show directly that this is true. Note that
the multiple Loewner equation for w = g(z, t) is equivalent to another equation for the inverse function
z = f(w, t),

df

dt
= −∂f

∂z

2w

w2 − λ2
.

As far as
β2 − λ2

2β3
=

1

2π

does not depend on t, the verification of the multiple Loewner equation for

f(w, t) =

[(
1−

3
√
6t

3
√
π2

)
1

w
+

1

2π
log

w + 3
√
6πt

w − 3
√
6πt

]−1

is achieved by elementary straightforward calculations. This completes the proof of Theorem 4. �

Remark 1. The restriction t < π2

6 which appeared in Theorem 4 is geometrically natural. The slit
endpoint z = f(λ(t), t) is moving along the right half of the circle of radius 1, that is centered on i, from
0 to 2i as t increases from 0 to π2

6 . It is directly verified that f(λ(π
2

6 ), π
2

6 ) = 2i. This means that the two

slits Γ7[0,
π2

6 ] and Γ8[0,
π2

6 ] meet at 2i forming the hull {z : |z − i| ≤ 1}.
Remark 2. Constant and exponential driving functions in Theorem 1 and Theorem 3, respectively,

are analytic in t. Therefore, they generate slits that are orthogonal to the real axis. In Theorem 2, square
root driving functions λ generate slits which emanate from the real axis under a positive angle depending
on the seminorm ||λ||1/2 in the class Lip(12). The driving functions λ in Theorem 4 belong to the class
Lip(13). Therefore, they generate slits, tangential to R, with the first order tangency at z = 0.
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