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Abstract―Results are presented from studies of the stability of the plane dust clusters in the form of a regular
polygon with the number of particles from two to five. It is assumed that the particles are placed in the plasma
consisting of Maxwellian electrons and a directed f low of cold ions. It is shown that, in such clusters, the
oscillatory instabilities can develop along with the aperiodic instabilities. The ranges of plasma parameters are
determined, within which the oscillatory instability of the five-particle cluster becomes saturated at the
weakly nonlinear stage. As a result, the cluster forms a time crystal, which can be a chiral crystal.
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1. INTRODUCTION
In the physics of dusty plasma [1–3], the ensem-

bles of a small number of macroparticles levitating in
the near-electrode layer of the gas-discharge plasma
are called the clusters [4]. The equilibrium levitation
height is determined by the balance between the grav-
ity and electrostatic repulsion of charged particles
from the lower electrode. In the horizontal direction,
the particle confinement is ensured by the special
electrode profiling. Thus, each individual particle is
localized in the asymmetric potential well character-
ized by the oscillation frequencies  (in the vertical
direction) and  (in the horizontal direction).

The distinctive feature of particle interactions is the
fact that due to the presence of the directed ion f low in
the near-electrode region, the electrostatic potential
in the vicinity of the charged particle turns out to be an
asymmetric function of coordinates 
(the z axis is directed vertically). As a result, the inter-
particle interaction turns out to be nonreciprocal, i.e.
the third Newton law is violated. This, in particular,
results in the occurrence of correlation between the
displacements of individual particles in the vertical
and horizontal directions.

Theoretical studies of the dynamics and stability of
the plane plasma clusters (for example, [5–9]) were
performed under the assumption that the potential of
particle interaction is the Coulomb or some other
model potential that does not take into account the
effect of nonreciprocal forces. This article is the con-
tinuation of a series of studies [10–14], in which the
dynamics of the two-dimensional ensembles of parti-
cles was investigated using the interaction potential
calculated numerically. The approach being developed

makes it possible to fully take into account the nonrec-
iprocity of interparticle forces.

The dynamics of clusters in the form of a regular
polygon, consisting of a small number ( ) of
particles, is considered. As is known, in the quasi-two-
dimensional plasma crystals, the nonreciprocity of
interparticle forces leads to the development of the
instability of coupled waves [3]. The nonlinear theory
of this instability [14] shows that a time crystal is
formed in a certain range of plasma parameters, i.e., in
the ground state, the dust particles oscillate near the
equilibrium positions. Such instability, which, in this
article, is called the oscillatory instability, can also
develop in the case of finite clusters.

The article is organized as follows. In Section 2, the
model used is briefly described. Next (in Section 3),
the linearized equations of motion for the N-particle
cluster are reduced to the block-diagonal form. In
Section 4, the eigenfrequencies of different clusters are
investigated, and the ranges of parameters are deter-
mined, within which one or another type of instability
develops. Finally, in Section 5, the nonlinear theory is
developed for the oscillatory instability of a five-parti-
cle-cluster which is of the most interest.

2. MODEL

An ensemble is considered consisting of N particles
located in the external potential well 

. It is believed that the parti-
cles have the same constant charges Q and are placed
in the plasma consisting of the Maxwellian electrons
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Fig. 1. Solution  as a function of M (1); clus-
ter radii as functions of the Mach number (2–5). Curve
number corresponds to the number of particles in the clus-
ter; .
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and the directed f low of cold ions. The corresponding
interaction potential has the following form:

(1)

where  is the f low velocity. In this case, the
dielectric constant of plasma is equal to 

, where  is the ion
plasma frequency,  is the electron Debye radius,
and  is the infinitely small collision frequency.
The interaction is isotropic in the plane , i.e.,
potential (1) has the following form: 

( ). The presence of the directed ion f low
results in the fact that , i.e., the
interparticle forces are nonreciprocal.

We use the dimensionless variables with the length
scale ; the interparticle forces are normal-

ized to , and the time scale for particles with the
mass  is . When we use these variables,
potential (1) is a function of the distance and also of
the only one parameter characterizing the plasma,
which is proportional to the Mach number of the ion
flow, , where  are the equilib-
rium densities of electrons and ions, and  is the ion
mass. The derivatives of the potential are calculated
using the numerical methods described in [13].

In equilibrium, the particles are located at the ver-
tices of a regular polygon
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The general equations of motion are as follows:

(3)

where . Expanding the equations of

motion in powers of the small deviations ,
in the zero-order approximation, we obtain the fol-
lowing equilibrium conditions:

(4)

where we used the following notations for the deriva-
tives of the interaction potential:

(5)

and  is the distance from the parti-
cle with number j to the particle with number 0.

In further consideration, the trap frequencies 
and the Mach number M are considered as the external
control parameters. The equilibrium cluster radius is
calculated using the first of Eqs. (4); it depends on  и
M. Several examples of how the parameter R depends
on M at the fixed frequency  are shown in Fig. 1. We
note that at  potential (1) turns out to be the
attractive potential at considerably large distances [11].
The shape of the potential well bottom in the coordi-
nates (R, M) is shown in Fig. 1 (curve 1). In this case,
there may be no external confinement in the transverse
direction, and the cluster radius reaches its maximum
value at . At , the cluster radius indefi-
nitely increases with decreasing frequency .

3. LINEARIZED EQUATIONS OF MOTION

In the first order of expansion of the general equa-
tions of motion (3) in powers of the small deviations
from equilibrium, we obtain the following equations:

In all, there can be  oscillations with frequencies
determined by the eigenvalues of the force matrix

. The analysis of the linearized equations of
motion can be greatly simplified, if we perform the
decomposition into irreducible representations of the
symmetry group of the cluster  [5]. For the hori-
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zontal and vertical displacements, this decomposition
looks differently:

(6)

where . Using the formula of finite geomet-
ric progression, it is easy to obtain the following
inverse transformations:

(7)

At  the perturbation with  corresponds
to the homogeneous cluster expansion or compression
in the xy plane, and the perturbation with 
results in the cluster rotation around the z-axis. Since
the displacements  are real, the transformed param-
eters  meet the obvious correlations

 and .
After using transformations (6) and (7), the linear-

ized equations of motion (3) can be rewritten in the
block-diagonal form:

where the  matrix has the following form:

(8)

The matrix elements included here can be writted
as the finite real sums:
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In the general case, matrix (8) does not have any
symmetry properties. However, in the absence of non-
reciprocal forces, the derivatives are equal to zero,

, , and the matrix 
becomes the Hermitian one. In this case, the equa-
tions for the displacements along the z-axis and in the
xy plane can be uncoupled and studied independently.

The use of transformations (6) and (7) makes it
possible to considerably simplify the problem of
searching for the oscillation frequencies and analyzing
the stability of dust clusters. All  oscillations are
divided into the groups of three oscillations; each
group is characterized by the number l, which corre-
sponds to the wave vector in the infinite systems. We
denote the eigenvalues of the matrix  (8) as

 ( ). These frequencies are the roots

of the cubic polynomial 
(I is the unity matrix), and, as can be seen from the
structure of matrix (9), the polynomial coefficients are
real.

It follows from explicit expressions (9) that
, so the relation 

is satisfied, i.e., all oscillations with  are
doubly degenerate. This degeneracy occurs due to the
fact that some waves propagating in different direc-
tions of the ring structure should have the same fre-
quencies. The oscillations with  and  (for
even numbers N) are not degenerate. For this reason,
for each cluster consisting of  particles, it is neces-
sary to study the eigenvalues of the matrix  for

. For each oscillation mode, the dis-
placements of particles in the cluster are determined
by the eigenvectors of the matrix  and can be calcu-
lated using relations (6).

Two different scenarios are possible for the loss of
stability when the external parameters change. First,
one of the roots of the characteristic polynomial can
change its sign, which corresponds to the development
of the aperiodic instability. Second, two real roots

 can merge and form a pair of the complex
conjugate roots. In this case, we deal with the oscilla-
tory instability similar to the instability of coupled
waves developing in the infinite plasma crystal.

,
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Fig. 2. An example of particle displacements for the mode
with .= 0l

Fig. 3. Critical frequencies for  and  (solid and
dashed lines, respectively); .
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4. EIGENFREQUENCIES

First of all, we notice some general properties of
matrix (8). At , the eigenfrequencies can be
obtained explicitly for an arbitrary number N. First,
there is the neutrally stable mode with ,
which corresponds to the rigid rotation of the cluster
without changing its shape ( , , ).
Another oscillation with  ( ,

, ) corresponds to the vertical oscillations
of the center of mass of the cluster without changing its
shape. Finally, the third mode has the following fre-
quency:

(10)

For this oscillation mode, the particles are dis-
placed along the straight lines (Fig. 2). In this case, the
horizontal components of the displacements are par-
allel to vectors  (2), and all their vertical components
are equal. Although the frequency (10) does not
depend on , the slope of the displacements is deter-
mined just by . In all the cases that have been stud-
ied, the square of frequency (10) turns out to be posi-
tive, and no instabilities arise associated with the exci-
tation of the symmetric oscillations. In what follows,
the oscillations with  are not specially discussed.

In the case of oscillations with , one of the fre-
quencies of a cluster consisting of  particles coin-
cides with the frequency of the trap ,
i.e., the characteristic polynomial can be written as a

product . In this case, the
shape of the cluster does not change; all particles are in
the xy plane, and the center of mass oscillates in an
arbitrary direction with the frequency . The fre-
quencies and polarizations of the other two oscillation
modes with  depend on the number of particles in
the cluster.
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4.1. Two Particles

In the case of a cluster consisting of two particles,
the oscillation  with the frequency  turns out to
be doubly degenerate. The frequency of the remaining
oscillation is equal to , and the
particle displacements are proportional, 
and . The condition that the quantity

 should be positive determines the fre-
quency range of the cluster stability: . An
example of the (M) dependence constructed using
potential (1) is shown in Fig. 3 (solid line). As the 
frequency decreases to the  frequency, there occurs
a tendency to the formation of the vertical chain of
particles; in this case, due to nonreciprocity of the
interparticle forces, both particles are displaced in the
same direction along the -axis.

4.2. Three Particles

In the case of three particles, the only nontrivial
mode is characterized by the number . The roots

of the quadratic equation  are as follows:

(11)

where .
Since the parameter D is positive, , both solu-
tions (11) are real, but one of them can become nega-
tive with decreasing frequency . The corresponding
critical frequency  is shown in Fig. 3 (dashed
curve). When the aperiodic instability develops, the
vertical displacements of two arbitrary particles are
directed opposite to the displacement of the third one,
for example, , , and

. In this case, the horizontal dis-
placements  have the same sign. Thus, during the
development of the aperiodic instability of the three-
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Fig. 4. Oscillatory instability of four-particle cluster. Solid
arrows correspond to instantaneous displacements of par-
ticles; dashed ellipses are trajectories of particles during
one oscillation period; , , , and

.
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Fig. 5. Oscillations of four-particle cluster with :
(a) stable horizontal oscillations, and (b) oscillations with
parameters corresponding to the boundary of the region of
the oscillatory instability development; , 
0.23, and .

(а) (b)
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Ω = .1 0 1
particle cluster, a tendency is observed to the forma-
tion of a three-dimensional structure.

4.3. Four Particles
In contrast to the examples considered above, the

dynamics of a four-particle cluster is determined by
the potential derivatives at two distances: 
and . For this reason, the explicit formulas for
the frequencies turn out to be more cumbersome, and
in further consideration, we will restrict ourselves to a
qualitative discussion of the cluster stability regions.

In the case , the eigenfrequencies of oscilla-
tions that remain after we have considered the solution
with  are determined by the roots of the

quadratic equation . These roots will be
the complex ones, if the following two conditions are
satisfied:

(12)
and

(13)

where

(14)

At the boundary of the domain defined by inequal-
ities (12) and (13), two real roots merge, and the fre-
quencies of coupled oscillations are determined by the
following relations:

(15)

For the coupled oscillations at the boundary of the
instability domain, the particle trajectories are shown
in Fig. 4. The particles move circularly around the
equilibrium position in the plane tilted at some angle
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to the xy plane. As already noted, the oscillation fre-
quencies with  and  coincide, but in the latter
case, the direction of particle motion is opposite.

The similar dynamics is observed for oscillations
with . There is the stable oscillation with the fre-
quency , for which the
particle displacements shown in Fig. 5a are in the hor-
izontal plane and do not depend on the external con-
trol parameters. The two remaining coupled oscilla-
tions can become unstable, if inequalities (12) and (13)
become satisfied. In this case, the critical values of the
parameter  will change as follows:

(16)

The frequencies of coupled oscillations at the
boundary parameters of the oscillatory instability
development are as follows:

(17)

and the displacements of particles occur along the
straight lines inclined at the same angles to the
xy plane (Fig. 5b).

If one of inequalities (12) or (13) is violated, the
roots of the characteristic equation become real. How-
ever, for both  and , the square of one of the
frequencies can become negative, which results in the
development of the aperiodic instability. For the four-
particle cluster, the resultant stability diagram is
shown in Fig. 6. At the boundary of the region , the
aperiodic instability of the mode with  develops;
an example of the particle displacements is shown in
Fig. 7. The region of the aperiodic instability develop-
ment for the mode with  (the region  in Fig. 6)
is entirely inside the region .

The regions  of the oscillatory instability devel-
opment are small. They are shown on the enlarged
scale in Fig. 6 on the right. These regions correspond
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Fig. 6. Stability diagram of the four-particle cluster:  are regions of the aperiodic instability development and  are regions
of the oscillatory instability development at ; .
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determined by the first inequality (12), and partially
overlap.

4.4. Five Particles

In the case of five particles, the cluster dynamics is
determined by the derivatives of the interaction poten-

tial at two distances:  and

. The explicit expressions for the
frequencies turn out to be very cumbersome, but can
be easily calculated using the numerical methods.

Just as in the case of the four-particle cluster, it is
necessary to study the modes with  and . The
cluster stability diagram is shown in Fig. 8. At the
boundary of the region , the aperiodic instability of
the mode with  develops; in this case, two arbi-
trary neighboring particles leave the xy plane in the
course of their displacement, and the other three dis-
place in the opposite direction. The region  of the
aperiodic instability development for the mode with

 is entirely inside the region .
In contrast to the case of the four-particle cluster

(Fig. 6), the regions  corresponding to the develop-
ment of the oscillatory instability occupy a consider-
able part of the stability diagram. For both types of the
coupled oscillations with  (the  regions in
Fig. 8), the particles move in circular orbits in the
vicinity of the equilibrium positions (Figs. 9 and 10).
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Fig. 7. Particle displacements at the boundary of the region
 in Fig. 6; , , and .2A = .0 8M Ω ≈ .0 0 54 Ω = .1 0 1
Their motions differ in the amplitudes and phases of
particle displacements. It turns out that both regions

 consist of two parts. The two parts of the  region
are separated by a narrow “slit” corresponding to the
range ; therefore, it is rather difficult to
reach the regions  under conditions of the poorly
controlled changes in the control parameters.

4.5. Open-Boundary Clusters

As already noted, in the subsonic or pure ion flow
with , in the horizontal direction, interaction
potential (1) turns out to be either the attractive poten-
tial (at the considerably large interparticle distances),
or the repulsive one (at small distances). In this case,
the clusters can exist even in the absence of the radial
confinement, . The structure and dynamics of
such clusters have some specific features.

The bottom of the potential well is located at the
distance  determined as the solution to the equation

. The shape of the potential well in the
(R, M) coordinates is shown in Fig. 1 (curve 1).
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1O

< 1M

Ω =1 0

0R
,ρ ρ, =( 0) 0U
Fig. 8. Stability diagram of the five-particle cluster:  are
regions of the aperiodic instability development, and 
are regions of the oscillatory instability development at

; .
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Fig. 9. Particle trajectories at the boundary of the region of
the oscillatory instability development; , ,

, , and .
= 1l = .1 1M

Ω ≈ .0 0 22 Ω = .1 0 1 ω ≈ .0 03

Fig. 10. Particle trajectories at the boundary of the region
of the oscillatory instability development; , ,

, , and .
= 2l = .1 5M
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Fig. 11. Critical frequencies for  and  (solid
and dashed lines, respectively); .
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In accordance with conditions (4), at , in the
case of the two-particle cluster, the maximum radius is

, and for the three-particle cluster, it is
. The formulas for the oscillation frequen-

Ω =1 0

= 0/2R R
= 0/ 3R R
cies given in Sections 4.1, 4.2 are also applicable in the
case of . When the  parameter decreases to a
certain critical value (Fig. 11), the aperiodic instability
develops. An interesting feature of this instability is
that, in contrast to the case of , at , the
vertical displacements of the particles vanish. In this
case, at the boundary of the region of the aperiodic
instability development, the two- and three-particle
clusters begin accelerating in the horizontal direction
without changing their shape, that is, they behave like
molecular motors.

Because of equilibrium condition (4), in the case of
four particles located at the vertices of a square, at

, the inequalities  are satisfied,
i.e., the nearest particles repel each other, and the
opposite ones attract each other. Obviously, such a
configuration is unstable even in the case of two-
dimensional motion ( ), and the square tends
to transform into a rhomb. Similar situation arises
when the cluster has the form of a regular pentagon.

Thus, in the absence of the radial confinement, the
clusters in the form of a regular polygon may exist only
when the number of particles is two or three.

In conclusion of this section, we note that the clus-
ters with a large number of particles ( ) always
turn out to be unstable. Apparently, this is a general
law: all known examples indicate that the two-dimen-
sional clusters in the form of a regular polygon exist
only for . For example, in the case of the Cou-
lomb interaction and the two-dimensional motion
( ) of six particles, the only stable configura-
tion has the form of a regular pentagon with an addi-
tional particle in its center [5].

5. NONLINEAR STAGE OF OSCILLATORY 
INSTABILITY

As can be seen in Figs. 6 and 8, when varying the
external control parameters , the boundary
of the region of the oscillatory instability development
can be most easily reached for the mode  of the
five-particle cluster (the  region in Fig. 8). For this
reason, we restrict ourselves to discussing the nonlin-
ear dynamics of the cluster with .

The standard Krylov–Bogolyubov method is used
to derive nonlinear equations. We set ,
where  is a small parameter. When approaching
the boundary of the  region (Fig. 8) from above, the
parameter δ vanishes, and at , the instability devel-
ops. At the lower boundary of the  region the reversed
situation occurs: the instability develops at δ > 0.

After substituting  into the initial
equations of motion (3), they are expanded in powers
of  up to the third order, and then transformations (6)

Ω =1 0 Ω0

Ω ≠1 0 Ω = Ω0 cr

Ω =1 0 < <02 2R R R
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j j jr r r
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and (7) are used. As a result, we obtain equations in the
following form:

(18)
where the matrix  is given by formula (8). The matri-
ces  are the quadratic functions of , and the matri-
ces , in addition to the cubic expansion terms, con-
tain a linear term proportional to δ.

We try the solution to Eqs. (18) in the form of the
following expansion:

(19)

where  is the slow time. In expansion (19), we set
 and  is the real slowly varying ampli-

tude, i.e., the first term of the expansion describes the
slow rotation of the cluster around the z-axis. The
complex amplitudes  correspond to the pertur-
bations propagating in different directions of the ring
structure. The frequency  is a doubly degenerate
root of the dispersion equation  at

, and  is the corresponding eigenvector, i.e.,
. The corrections  and  to

be determined should be real, which follows from the

correlations .
After substituting expansion (19) into Eqs. (18), the

zero term of the expansion in powers of  vanishes.
The next term of the expansion makes it possible to
express the corrections  in terms of the deriva-
tives of the  amplitudes and their quadratic
combinations. The existence condition for the solu-
tion for the corrections  leads to the following set
of equations for the amplitudes:

(20)

(21)

The explicit expressions for the coefficients α, β,
and  are too cumbersome, but they can be calculated
using the numerical methods. We note that the β coef-
ficient is always positive at the upper boundary of the

 region in Fig. 8 and always negative at its lower
boundary. The rest of the coefficients can change sign
when changing the parameters M and .

The physical meaning of Eqs. (20) and (21) is quite
clear. In the linear stage, the presence of the terms pro-
portional to β leads to (depending on the sign of δ)
either an exponential increase in the amplitudes or the
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slow oscillations. The rest of the terms describe the
parametric interaction of the oscillations with the
amplitudes  and their correlation with the cluster
rotation in the horizontal plane, described by the ampli-
tude . According to Eq. (21), the cluster rotation
occurs due to the inequality of the amplitudes .

Assuming that there is no rotation at the initial
time, we integrate Eq. (21):

(22)
Then Eq. (20) can be rewritten in the following form

(23)

where

(24)

and , .
For considerably large amplitudes , effective

potential (24) is positive when two following condi-
tions are met:

(25)
If one of these inequalities is violated, then the solu-
tion to Eqs. (23) will tend to infinity during finite time,
i.e., the instability development becomes explosive.

We are interested in the stationary solutions to
Eq. (23) in the region of the instability development

. When inequalities (25) are satisfied, there are
several nonzero solutions to the equations

. First, there is the following solution with
equal amplitudes:

(26)

Substituting  into Eqs. (23) and
keeping the linear terms of the expansion in powers of

, we easily obtain that stationary solution (26) will
be stable, if the following condition is satisfied:

(27)
We note that, for the solution (26), angular velocity (22)
of the cluster rotation vanishes.

Second, there are stationary solutions, for which
one of the amplitudes is zero, for example:

(28)

This solution will be stable, if the following condition
is satisfied:

(29)
Of course, the amplitudes  and  in solutions (28) can
be permuted. In solutions (28), angular velocity (22) does
not vanish, and the direction of rotation depends on the
sign of α and on which of the amplitudes is zero.
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Fig. 12. Coefficients  (1) and  (2) as functions of the
Mach number M at the upper boundary of the  region
(Fig. 8); .
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Thus, during the development of oscillatory insta-
bility of the cluster, different stationary states arise. The
parametric interaction can result in the fact that the
amplitudes of the perturbations are equal and the rigid
rotation of the cluster does not occur. In this case, the
cluster particles oscillate along the straight lines, as it is
shown in Fig. 2; however, the directions of their trajec-
tories depend on the external parameters.

It is also possible that only one of the perturbation
amplitudes is nonzero; then the particles circularly
move around the equilibrium positions (Fig. 10), and
the rigid rotation of the cluster around the z-axis
occurs at the constant angular velocity. Which of the
amplitudes  is non- zero and the direction of rota-
tion are determined by random factors. In this case,
the cluster becomes the chiral one.

The coefficients  and  at the upper boundary of
the O2 region (Fig. 8) as functions of the Mach number M
(calculated numerically using potential (1)) are shown
in Fig. 12. At , the coefficient is nega-
tive, , i.e., in accordance with inequalities (25),
there are no stationary states and the instability devel-
opment is explosive. In particular, in the entire left part
of the  region (Fig. 8) this coefficient is negative.

In the ranges  and M >
, inequality (29) is true, i.e., the instability

becomes saturated in the weakly nonlinear stage. In
the stationary state, the clusters become chiral, and
the amplitude of the oscillations is determined by
expressions (28). In the range , the
amplitudes of both oscillations are determined by
expression (26), and the chirality disappears.

6. CONCLUSIONS

In this work, the theory is developed of the stability
of finite dust particle clusters in the near-electrode
plasma layer, which takes into account the nonrecip-
rocal nature of the forces. The clusters in the form of a

,1 2A

γ1' γ2'

< ≈ .0 1 33M M
γ <1' 0

2O

< < ≈ .0 1 1 63M M M
≈ .2 1 88M

< <1 2M M M
regular polygon are considered with the number of
particles from two to five. The ranges of plasma
parameters are determined, within which the aperi-
odic instabilities develop, which result in the forma-
tion of three-dimensional structures.

For the clusters consisting of four or five particles,
the development of the oscillatory instability is possi-
ble, which is similar to the instability of coupled waves
developing in the infinite crystals. In a certain range of
plasma parameters, as a result of the instability devel-
opment in the five-particle cluster, an analogue of the
time crystal forms that is chiral.
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