Skip to main content
Log in

On the theory of polarization radiation in media with sharp boundaries

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Polarization radiation generated when a point charge moves uniformly along a straight line in vacuum in the vicinity of media with a finite permittivity ɛ(ω) = ɛ′ + iɛ″ and sharp boundaries is considered. A method is developed in which polarization radiation is represented as the field of the current induced in the substance by the field of the moving charge. The solution to the problem of radiation induced when a charge moves along the axis of a cylindrical vacuum channel in a thin screen with a finite radius and a finite permittivity is obtained. Depending on the parameters of the problem, this solution describes various types of radiation (Cherenkov, transition, and diffraction radiation). In particular, when the channel radius tends to zero and the outer radius of the screen tends to infinity, the expression derived for the emitted energy coincides with the known solution for transition radiation in a plate. In another particular case of ideal conductivity (ɛ″ → ∞), the relevant formula coincides with the known results for diffraction radiation from a circular aperture in an infinitely thin screen. The solution is obtained to the problem of radiation generated when the charge flies near a thin rectangular screen with a finite permittivity. This solution describes the diffraction and Cherenkov mechanisms of radiation and takes into account possible multiple re-reflections of radiation in the screen. The solution to the problem of radiation generated when a particles flies near a thin grating consisting of a finite number of strips having a rectangular cross section and a finite permittivity and separated by vacuum gaps (Smith-Purcell radiation) is also obtained. In the special case of ideal conductivity, the expression derived for the emitted energy coincides with the known result in the model of surface currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ya. Amusia, Radiat. Phys. Chem. 75, 1232 (2006).

    Article  ADS  Google Scholar 

  2. V. E. Pafomov, Tr. Fiz. Inst. im. P. N. Lebedeva, Ross. Akad. Nauk 44, 28 (1969) [Proc. P. N. Lebedev, Phys. Inst. 44, 25 (1971)].

    Google Scholar 

  3. D. V. Karlovets and A. P. Potylitsyn, Zh. Eksp. Teor. Fiz. 134(5), 887 (2008) [JETP 107 (5), 755 (2008)].

    Google Scholar 

  4. D. V. Karlovets and A. P. Potylitsyn, Phys. Lett. A 373, 1988 (2009).

    Article  ADS  Google Scholar 

  5. P. M. van den Berg and A. J. A. Nicia, J. Phys. A: Math. Gen. 9, 1133 (1976).

    Article  ADS  Google Scholar 

  6. I. A. Gilinskii, Electromagnetic Surface Phenomena (Nauka, Novosibirsk, 1990) [in Russian].

    Google Scholar 

  7. V. P. Shestopalov, The Smith-Purcell Effect (Nova Science, New York, 1998).

    Google Scholar 

  8. G. Kube, Nucl. Instrum. Methods Phys. Res., Sect. B 227, 180 (2005).

    Article  ADS  Google Scholar 

  9. A. P. Potylitsyn, M. I. Ryazanov, M. N. Strikhanov, and A. A. Tishchenko, Diffraction Radiation from Relativistic Particles (Springer, Berlin, 2010).

    Google Scholar 

  10. L. Durand, Phys. Rev. D: Part. Fields 11, 89 (1975).

    Article  ADS  Google Scholar 

  11. M. I. Ryazanov, Zh. Eksp. Teor. Fiz. 127(3), 528 (2005) [JETP 100 (3), 468 (2005)].

    MathSciNet  Google Scholar 

  12. I. N. Toptygin, Modern Electrodynamics, Vol. 2: Theory of Electromagnetic Phenomena in Matter (Regulyarnaya i Khaoticheskaya Dinamika, Moscow, 2005) [in Russian].

    Google Scholar 

  13. B. M. Bolotovskii, Usp. Fiz. Nauk 75, 295 (1961) [Sov. Phys.—Usp. 4, 781 (1961)].

    Google Scholar 

  14. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Fizmatlit, Moscow, 1963; Academic, New York, 1994).

    Google Scholar 

  15. V. P. Zrelov, M. Klimanova, V. P. Lupiltsev, and J. Ružička, Nucl. Instrum. Methods Phys. Res. 215, 141 (1983).

    Article  Google Scholar 

  16. M. I. Ryazanov, Electrodynamics of Condensed Matter (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Butterworth-Heinemann, Oxford, 2004; Fizmatlit, Moscow, 2005).

    Google Scholar 

  18. D. V. Karlovets and A. P. Potylitsyn, Pis’ma Zh. Eksp. Teor. Fiz. 90(5), 368 (2009) [JETP Lett. 90 (5), 326 (2009)].

    Google Scholar 

  19. V. L. Ginzburg and V. N. Tsytovich, Transition Radiation and Transition Scattering (Nauka, Moscow, 1984; Adam Hilger, New York, 1990).

    Google Scholar 

  20. M. L. Ter-Mikaelyan, High-Energy Electromagnetic Processes in Condensed Media (Academy of Science of the ArmSSR, Yerevan, 1969; Wiley, New York, 1972).

    Google Scholar 

  21. G. M. Garibyan and Yan Shi, X-Ray Transition Radiation (Academy of Science of the ArmSSR, Yerevan, 1983) [in Russian].

    Google Scholar 

  22. Yu. N. Dnestrovskii and D. P. Kostomarov, Dokl. Akad. Nauk SSSR 124, 1026 (1959) [Sov. Phys. Dokl. 4, 158 (1959)].

    Google Scholar 

  23. B. M. Bolotovskii and E. A. Galst’yan, Usp. Fiz. Nauk 170(8), 809 (2000) [Phys.—Usp. 43 (8), 755 (2000)].

    Article  Google Scholar 

  24. D. Xiang, W.-H. Huang, Y.-Z. Lin, S.-J. Park, and I. S. Ko, Phys. Rev. Spec. Top.—Accel. Beams 11, 024001 (2008).

    Article  ADS  Google Scholar 

  25. P. M. van den Berg, J. Opt. Soc. Am. 63, 1588 (1973).

    Article  ADS  Google Scholar 

  26. J. H. Brownell, J. Walsh, and G. Doucas, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 57, 1075 (1998).

    Article  Google Scholar 

  27. A. S. Kesar, Phys. Rev. Spec. Top.—Accel. Beams 8, 072801 (2005).

    Article  ADS  Google Scholar 

  28. D. V. Karlovets, Candidate’s Dissertation in Mathematical Physics (Tomsk Polytechnical University, Tomsk, 2008).

    Google Scholar 

  29. V. Blackmore, G. Doucas, C. Perry, B. Ottewell, M. F. Kimmitt, M. Woods, S. Molloy, and R. Arnold, Phys. Rev. Spec. Top.—Accel. Beams 12, 032803 (2009).

    Article  ADS  Google Scholar 

  30. N. F. Shul’ga and V. V. Syshchenko, J. Phys.: Conf. Ser. 236, 012010 (2010).

    Article  ADS  Google Scholar 

  31. A. P. Potylitsyn, Phys. Lett. A 238, 112 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Karlovets.

Additional information

Original Russian Text © D.V. Karlovets, 2011, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 140, No. 1, pp. 36–55.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karlovets, D.V. On the theory of polarization radiation in media with sharp boundaries. J. Exp. Theor. Phys. 113, 27–45 (2011). https://doi.org/10.1134/S1063776111050116

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776111050116

Keywords

Navigation