Skip to main content
Log in

Electrochemical Sensing of Uric Acid Using a ZnO/Graphene Nanocomposite Modified Graphite Screen Printed Electrode

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

An electrochemical sensor has been fabricated using ZnO/GR nanocomposite for selective determination of uric acid (UA) in a phosphate buffer solution (PBS, pH 7.0). The electrochemical behaviour of UA at the ZnO/GR nanocomposite modified graphite screen printed electrodes (SPE) was studied by cyclic voltammetry and differential pulse voltammetry methods. The modified electrode exhibited remarkably anodic peak corresponding to the oxidation of uric acid over the concentration range of 1.0–100.0 μM with detection limit of 0.43 μM (S/N = 3). The fabricated sensor was further applied to the detection of uric acid in urine samples with good selectivity and high reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qu, F., Ma, X., Zhu, L., and Chen, F., Switchable electrode functionalized with an azobenzene-containing copolymer thin film using the Langmuir–Schaefer technique for a “smart” uric acid/air fuel cell, Electrochem. Commun., 2017, vol. 77, p. 49.

    Article  CAS  Google Scholar 

  2. Sheng, Y., Yang, H., Wang, Y., Han, L., Zhao, Y., and Fan, A., Silver nanoclusters-catalyzed luminol chemiluminescence for hydrogen peroxide and uric acid detection, Talanta, 2017, vol. 166, p. 268.

    Article  CAS  PubMed  Google Scholar 

  3. Beitollahi, H., Mazloum Ardakani, M., Naeimi, H., and Ganjipour, B., Electrochemical characterization of 2,2'-[1,2-ethanediylbis (nitriloethylidyne)]-bis-hydroquinone-carbon nanotube paste electrode and its application to simultaneous voltammetric determination of ascorbic acid and uric acid, J. Solid State Electrochem., 2009. vol. 13, p. 353.

    Google Scholar 

  4. Wang, C.Y., Huang, C.W., Wei, T.T., Wu, M.Y., and Lin, Y.W., Fluorescent detection of uric acid in biological samples through the inhibition of cobalt(II) catalyzed Amplex UltraRed, Sens. Actuators, B, 2017, vol. 244, p. 357.

    Article  CAS  Google Scholar 

  5. Mohammadi, S., Beitollahi, H., and Mohadesi, A., Electrochemical behaviour of a modified carbon nanotube paste electrode and its application for simultaneous determination of epinephrine, uric acid and folic acid, Sens. Lett., 2013, vol. 11, p. 388.

    Article  CAS  Google Scholar 

  6. Liu, Y., Li, H., Guo, B., Wei, L., Chen, B., and Zhang, Y., Gold nanoclusters as switch-off fluorescent probe for detection of uric acid based on the inner filter effect of hydrogen peroxide-mediated enlargement of gold nanoparticles, Biosens. Bioelectron., 2017, vol. 91, p. 734.

    Article  CAS  PubMed  Google Scholar 

  7. Mazloum-Ardakani, M., Beitollahi, H., Ganjipour, B., and Naeimi, H., Novel carbon nanotube paste electrode for simultaneous determination of norepinephrine, Uric acid and D-penicillamine, Int. J. Electrochem. Sci., 2010, vol. 5, p. 531.

    CAS  Google Scholar 

  8. Dey, M.K. and Satpati, A.K., Functionalised carbon nano spheres modified electrode for simultaneous determination of dopamine and uric acid, J. Electroanal. Chem., 2017, vol. 767, p. 95.

    Article  CAS  Google Scholar 

  9. Ferin, R., Pavao, M.L., and Baptista, J., Rapid, sensitive and simultaneous determination of ascorbic and uric acid in human plasma by ion-exclusion HPLC-UV, Clin. Biochem., 2013, vol. 46, p. 665.

    Article  CAS  PubMed  Google Scholar 

  10. Lu, H.F., Li, J.Y., Zhang, M.M., Wu, D., and Zhang, Q.L., A highly selective and sensitive colorimetric uric acid biosensor based on Cu(II)-catalyzed oxidation of 3,3',5,5'-tetramethylbenzidine, Sens. Actuators, B, 2017, vol. 244, p. 77.

    Article  CAS  Google Scholar 

  11. Sheng, Y., Yang, H., Wang, Y., Han, L., Zhao, Y., and Fan, A., Silver nanoclusters-catalyzed lutninol chemiluminescence for hydrogen peroxide and uric acid detection, Talanta, 2017, vol. 166, p. 268.

    Article  CAS  PubMed  Google Scholar 

  12. Li, X.L., Li, G., Jiang, Y.Z., Kang, D., Jin, C.H., Shi, Q., Jin, T., Inoue, K., Todoroki, K., Toyooka, T., and Min, J.Z., Human nails metabolite analysis: A rapid and simple method for quantification of uric acid in human fingernail by high-performance liquid chroma-tography with UV-detection, J. Chromatogr. B, 2015, vol. 1002, p. 394.

    Article  CAS  Google Scholar 

  13. Gupta, V.K., Ganjali, M.R., Norouzi, P., Khani, H., Nayak, A., and Agarwal, S., Electrochemical analysis of some toxic metals and drugs by ion selective electrodes, Crit. Rev. Anal. Chem., 2011, vol. 41, p. 282.

    Article  CAS  PubMed  Google Scholar 

  14. Gupta, V.K., Karimi-Maleh, H., and Roya Sadegh, R., Simultaneous determination of hydroxylamine, phenol and sulfite in water and waste water samples using a voltammetric nanosensor, J. Electrochem. Sci., 2015, vol. 10, p. 303.

    Google Scholar 

  15. Beitollahi, H., Raoof, J.B., Karimi-Maleh, H., and Hosseinzadeh, R., Electrochemical behavior of isoproterenol in the presence of uric acid and folic acid at a carbon paste electrode modified with 2,7-bis(ferrocenyl ethyl)fluoren-9-one and carbon nanotubes, J. Solid State Electrochem., 2012, vol. 16, p. 1701.

    Article  CAS  Google Scholar 

  16. Gupta, V.K., Jain, S., and Khurana, U., A PVC-based pentathia-15-crown-5 membrane potentiometric sensor for mercury(II), Electroanalysis, 1997, vol. 9, p. 478.

    Article  CAS  Google Scholar 

  17. Prasad, R., Gupta, V.K., and Kumar, A., Metallotetraazaporphyrin based anion sensors: Regulation of sensor characteristics through central metal ion coordination, Anal. Chim. Acta, 2004, vol. 508, p. 61.

    Article  CAS  Google Scholar 

  18. Gupta, V.K., Jain, A.K., and Kumar, P., PVC-based membranes of N,N'-dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane as Pb(II)-selective sensor, Sens. Actuators, B, 2006, vol. 120, p. 259.

    Article  CAS  Google Scholar 

  19. Yu, H.W., Jiang, J.H., Zhang, Z., Wan, G.C., Liu, Z.Y., Chang, D., and Pan, H.Z., Preparation of quantum dots CdTe decorated graphene composite for sensitive detection of uric acid and dopamine, Anal. Biochem., 2017, vol. 519, p. 92.

    Article  CAS  PubMed  Google Scholar 

  20. Gupta, V.K., Jain, A.K., Maheshwari, G., and Lang, H., Copper (II)-selective potentiometric sensor based on porphyrins in PVC matrix, Sens. Actuators, B, 2006, vol. 117, p. 99.

    Article  CAS  Google Scholar 

  21. Jain, A.K., Gupta, V.K., Radi, S., Singh, L.P., and Raisoni, J.R., A comparative study of Pb2+ sensors based on derivatized tetrapyrazole and calix[4]arene receptors, Electrochim. Acta, 2006, vol. 51, p. 2547.

    Article  CAS  Google Scholar 

  22. Gupta, V.K., Jain, A.K., Agarwal, P.K.S., and Maheshwari, G., Chromium(III)-selective sensor based on tri-othymotide in PVC matrix, Sens. Actuators, B, 2006, vol. 113, p. 182.

    Article  CAS  Google Scholar 

  23. Beitollahi, H., Raoof, J.B., and Hosseinzadeh, R., Electroanalysis and simultaneous determination of 6-thioguanine in the presence of uric acid and folic acid using a modified carbon nanotube paste electrode, Anal. Sci., 2011, vol. 27, p. 991.

    Article  CAS  PubMed  Google Scholar 

  24. Gupta, V.K., Singh, A.K., Mehtab, S., and Gupta, B.A., A Cobalt(II) selective PVC membrane based on a Schiff base complex of N,N-bis(salicylidene)-3,4-diaminotoluene, Anal. Chim. Acta, 2006, vol. 566, p. 5.

    Article  CAS  Google Scholar 

  25. Goyal, R.N., Gupta, V.K., and Bachheti, N., Fullerene-C60-modified electrode as a sensitive voltammetric sensor for detection of nandrolone, Anal. Chim. Acta, 2007, vol. 597, p. 82.

    Article  CAS  PubMed  Google Scholar 

  26. Gupta, V.K., Jain S., and Chandra, S., Chemical Sensor for lanthanum(III) determination using aza crown as ionophore in poly (vinyl chloride) matrix, Anal. Chim. Acta, 2003, vol. 486, p. 199.

    Article  CAS  Google Scholar 

  27. Suprun, E.V., Zharkova, M.S., Veselovsky, A.V., Archakov, A.I., and Shumyantseva, V.V., Electrochemical oxidation of thrombin on carbon screen printed electrodes, Russ. J. Electrochem., 2017, vol. 53, p. 97.

    Article  CAS  Google Scholar 

  28. Beitollahi, H. and Garkani Nejad, F., Graphene Oxide/ZnO nanocomposite for sensitive and selective electrochemical sensing of levodopa and tyrosine using modified graphite screen printed electrode, Electroanalysis, 2016, vol. 28, p. 2237.

    Article  CAS  Google Scholar 

  29. Li, S., Zhang, Q., Lu, Y., Ji, D., Zhang, D., Wu, J., Chen, X., and Liu, Q., One step electrochemical deposition and reduction of graphene oxide on screen printed electrode for impedance detection of glucose, Sens. Actuators, B, 2017, vol. 244, p. 290.

    Article  CAS  Google Scholar 

  30. Tajik, S., Taher, M.A., and Beitollahi, H., Application of a new ferrocene-derivative modified-graphene paste electrode for simultaneous determination of isoproterenol, acetaminophen and theophylline, Sens. Actuators, B, 2014, vol. 197, p. 228.

    Article  CAS  Google Scholar 

  31. Khani, H., Rofouei, M.K., Arab, P., Gupta, V.K., and Vafaei, Z., Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: Application to potentiometric monitoring of mercury ion(II), J. Hazard. Mater., 2010, vol. 183, p. 402.

    Article  CAS  PubMed  Google Scholar 

  32. Chekin, F., Bagheri, S., and Abd Hamid, S.B., Synthesis of graphene oxide nanosheet: A novel glucose sensor based on nickel-graphene oxide composite film, Russ. J. Electrochem., 2014, vol. 50, p. 1044.

    Article  CAS  Google Scholar 

  33. Goyal, R.N., Gupta, V.K., and Chatterjee, S., Voltammetric biosensors for the determination of paracetamol at carbon nanotube modified pyrolytic graphite electrode, Sens. Actuators, B, 2010, vol. 149, p. 252.

    Article  CAS  Google Scholar 

  34. Beitollahi, H., Tajik, S., and Biparva, P., Electrochemical determination of sulfite and phenol using a carbon paste electrode modified with ionic liquids and graphene nanosheets: Application to determination of sulfite and phenol in real samples, Measurement, 2014, vol. 56, p. 170.

    Article  Google Scholar 

  35. Galashev, A.E. and Zaikov, Y.P., Molecular dynamics study of Li+ migration through graphene membranes, Russ. J. Electrochem., 2015, vol. 51, p. 867.

    Article  CAS  Google Scholar 

  36. Beitollahi, H. and Salimi, H., A triple electrochemical platform for simultaneous determination of isoproterenol, acetaminophen and tyrosine based on a glassy carbon electrode modified with hematoxylin and grapheme, J. Electrochem. Soc., 2016, vol. 163, p. H1157.

    Google Scholar 

  37. Mehta, J., Bhardwaj, N., Bhardwaj, S.K., Tuteja, S.K., Vinayak, P., Paul, A.K., Kim, K.H., and Deep, A., Graphene quantum dot modified screen printed immunosensor for the determination of parathion, Anal. Biochem., 2017, vol. 523, p. 1.

    Article  CAS  PubMed  Google Scholar 

  38. Tajik, S., Taher, M.A., and Beitollahi, H., First report for electrochemical determination of levodopa and cabergoline: Application for determination of levodopa and cabergoline in human serum, urine and pharmaceutical formulations, Electroanalysis, 2014, vol. 26, p. 796.

    Article  CAS  Google Scholar 

  39. Yang, Y.J. and Li, W., CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of sunset yellow and tartrazine, Russ. J. Electrochem., 2015, vol. 51, p. 218.

    Article  CAS  Google Scholar 

  40. Gupta, V.K., Mergu, N., Kumawat, L.K., and Singh, A.K., A reversible fluorescence “off-on-off” sensor for sequential detection of aluminum and acetate/fluoride ions, Talanta, 2015, vol. 144, p. 80.

    Article  CAS  PubMed  Google Scholar 

  41. Gupta, V.K., Singh, A.K., and Kumawat, L.K., Thiazole Schiff base turn-in fluorescent chemosensor for Al3+ ion, Sens. Actuators B, 2014, vol. 195, p. 98.

    Article  CAS  Google Scholar 

  42. Beitollahi, H. and Sheikhshoaie, I., Electrochemical behavior of carbon nanotube/Mn(III) salen doped carbon paste electrode and its application for sensitive determination of N-acetylcysteine in the presence of folic acid, Int. J. Electrochem. Sci., 2012, vol. 7, p. 7684.

    CAS  Google Scholar 

  43. Gupta, V.K., Goyal, R.N., and Sharma, R.A., Anion recognition using newly synthesized hydrogen bonding disubstituted phenylhydrazone based receptors: poly (vinyl chloride) based sensor for acetate, Talanta, 2008, vol. 76, p. 859.

    Article  CAS  PubMed  Google Scholar 

  44. Srivastava, S.K., Gupta, V.K., and Jain, S., PVC-based 2,2,2-cryptand sensors for zinc ions, Anal. Chem., 1996, vol. 68, p. 1272.

    Article  CAS  PubMed  Google Scholar 

  45. Gupta, V.K., Mergu, N., Kumawat, L.K., and Singh, A.K., Selective naked-eye detection of Magnesium(II) ions using a coumarin-derived fluorescent probe, Sens. Actuators, B, 2015, vol. 207, p. 216.

    Article  CAS  Google Scholar 

  46. Karimi-Maleh, H., Keyvanfard, M., Alizad, K., Fouladgar, M., Beitollahi, H., Mokhtari, A., and Gholami- Orimi, F., Voltammetric determination of N-actylcysteine using modified multiwall carbon nanotubes paste electrode, Int. J. Electrochem. Sci., 2011, vol. 6, p. 6141.

    CAS  Google Scholar 

  47. Gupta, V.K., Gupta, V.K., Al Khayat, M., and Gupta, B., Neutral carriers based polymeric membrane electrodes for selective determination of mercury(II), Anal. Chim. Acta, 2007, vol. 590, p. 81.

    CAS  Google Scholar 

  48. Jain, A.K., Gupta, V.K., Singh L.P., and Khurana, U., Macrocycle based Membrane Sensors for the determination of cobalt(II) ions, Analyst, 1997, vol. 122, p. 583.

    Article  CAS  Google Scholar 

  49. Gupta, V.K., Chandra, S., and Mangla, R., Dicyclohexano-18-crown-6 as active material in PVC matrix membrane for the fabrication of cadmium selective potentiometric sensor, Electrochim. Acta, 2002, vol.47, p. 1579.

    Google Scholar 

  50. He, P., Yang, K., Wang, W., Dong, F., Du, L., and Deng, Y., Reduced graphene oxide-CoFe2O4 composites for supercapacitor electrode, Russ. J. Electrochem., 2013, vol. 49, p. 359.

    Article  CAS  Google Scholar 

  51. Gupta, V.K., Prasad, R., Mangla, R., and Kumar, P., New nickel(II) selective potentiometric sensor based on 5,7,12,14-tetramethyldibenzotetraazaannulene in a poly (vinyl chloride) matrix, Anal. Chim. Acta, 2000, vol. 420, p. 19.

    Article  CAS  Google Scholar 

  52. Jain, R., Gupta, V.K., Jadon, N., and Radhapyari, K., Voltammetric determination of cefixime in pharmaceuticals and biological fluids, Anal. Biochem., 2010, vol. 407, p. 79.

    Article  CAS  PubMed  Google Scholar 

  53. Gupta, V.K., Mangla, R., Khurana U., and Kumar, P., Determination of uranyl ions using poly (vinyl chloride) based 4-tert-butylcalix [6] arene membrane sensor, Electroanalysis, 1999, vol. 11, p. 573.

    Article  CAS  Google Scholar 

  54. Jaiswal, N., Tiwari, I., Foster, C.W., and Banks, C.E., Highly sensitive amperometric sensing of nitrite utilizing bulk-modified MnO2 decorated graphene oxide nanocomposite screen-printed electrodes, Electrochim. Acta, 2017, vol. 227, p. 255.

    Article  CAS  Google Scholar 

  55. Gupta, V.K., Sethi, B., Sharma, R.A., Agarwal, S., and Bharti, A., Mercury selective potentiometric sensor based on low rim functionalized thiacalix [4] arene as a cationic receptor, J. Mol. Liq., 2013, vol. 177, p. 114.

    Article  CAS  Google Scholar 

  56. Jain, A.K., Gupta, V.K., Sahoo B.B., and Singh, L.P., Copper(II)-selective electrodes based on macrocyclic compounds, Anal. Proc. incl. Anal. Commun., 1995, vol. 32, p. 99.

    Article  Google Scholar 

  57. Gupta, V.K., Agarwal, S., and Singhal, B., A review on the recent advances on potentimetric membrane sensors for pharmaceutical analysis, Comb. Chem. High Throughput Screen, 2011, vol. 14, p. 284.

    Article  CAS  PubMed  Google Scholar 

  58. Karimi-Maleh, H., Ensafi, A.A., Beitollahi, H., Khalilzadeh, M.A., and Biparva, P., Electrocatalytic determination of sulfite using a modified carbon nanotubes paste electrode: Application for determination of sulfite in real samples, Ionics, 2012, vol. 18, p. 687.

    Article  CAS  Google Scholar 

  59. Gupta, V.K., Jain, A.K., Agarwal, S., and Maheshwari, G., An iron(III) ion selective sensor based on a μ bis (tridentate) ligand, Talanta, 2007, vol. 71, p. 1964.

    Article  CAS  PubMed  Google Scholar 

  60. Jain, A.K., Gupta, V.K., Khurana U., and Singh, L.P., A new membrane Sensor for UO2+, based on 2-Hydroxyacetophenoneoxime-thioureatrioxane resin, Electroanalysis, 1997, vol. 9, p. 857.

    Article  CAS  Google Scholar 

  61. Gupta, V.K., Pathania, D., Agarwal, S., and Sharma, S., Decolorization of hazardous dye from water system using chemical modified Ficus carica adsorbent, J. Mol. Liq., 2012, vol. 174, p. 86.

    Article  CAS  Google Scholar 

  62. Akhgar, M.R., Beitollahi, H., Salari, M., Karimi-Maleh, H., and Zamani, H., Fabrication of a sensor for simultaneous determination of norepinephrine, acetaminophen and tryptophan using a modified carbon nanotube paste electrode, Anal. Methods, 2012, vol. 4, p. 259.

    CAS  Google Scholar 

  63. Gupta, V.K., Mittal, A., Malviya, A., and Mittal, J., Adsorption of Carmoisine A from wastewater using waste materials—Bottom Ash and De-Oiled Soya, J. Colloid Interface Sci., 2009, vol. 355, p. 24.

    Article  CAS  Google Scholar 

  64. Srivastava, S.K., Gupta, V.K., and Jain, S., Determination of lead using poly (vinyl chloride) based crown ether membrane, Analyst, 1995, vol. 120, p. 495.

    Article  CAS  Google Scholar 

  65. Gupta, V.K., Jain, A.K., and Maheshwari, G., Novel aluminum(III) selective potentiometric sensor based on morin in poly (vinyl chloride) matrix, Talanta, 2007, vol. 72, p. 1469.

    Article  CAS  PubMed  Google Scholar 

  66. Miao, F. and Tao, B., Photovoltaic properties of oriented ZnO nanowires arrays decorated with TiO2 shell layer for dye-sensitized solar cell application, Russ. J. Electrochem., 2016, vol. 52, p. 533.

    Article  CAS  Google Scholar 

  67. Jiang, Y., Sun, R., Zhang, H.B., Min, P., Yang, D., and Yu, Z.Z., Graphene-coated ZnO tetrapod whiskers for thermally and electrically conductive epoxy composites, Composites, Part A, 2017, vol. 94, p. 104.

    Article  CAS  Google Scholar 

  68. Zhao, Y., Ma, J., Liu, J., and Bao, Y., Synthesis of fireworks-shaped ZnO/graphite-like carbon nanowires with enhanced visible-light photocatalytic activity and anti-photocorrosion, Colloids Surf., A, 2017, vol. 518, p. 57.

    Article  CAS  Google Scholar 

  69. Hummers, W.S. and Offeman, R.E., Preparation of graphitic oxide, J. Am. Chem. Soc., 1958, vol. 80, p. 1339.

    Article  CAS  Google Scholar 

  70. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., N.Y.: Wiley, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasoul Rezaei.

Additional information

Published in Russian in Elektrokhimiya, 2018, Vol. 54, No. 9S, pp. S26–S34.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, R., Foroughi, M.M., Beitollahi, H. et al. Electrochemical Sensing of Uric Acid Using a ZnO/Graphene Nanocomposite Modified Graphite Screen Printed Electrode. Russ J Electrochem 54, 860–866 (2018). https://doi.org/10.1134/S1023193518130347

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518130347

Keywords

Navigation