Skip to main content
Log in

Genetic variation and differentiation in striped field mouse Apodemus agrarius inferred from RAPD-PCR analysis

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Genetic variation and differentiation of the trans-Palearctic species Apodemus agrarius (striped field mouse), whose range consists of two large isolates—European-Siberian and Far Eastern-Chinese, were examined using RAPD-PCR analysis. The material from the both parts of the range was examined (41 individual of A. agrarius from 18 localities of Russia, Ukraine, Moldova, and Kazakhstan); the Far Eastern-Chinese part was represented by samples from the Amur region, Khabarovsk krai, and Primorye (Russia). Differences in frequencies of polymorphic RAPD loci were found between the European-Siberian and the Far Eastern population groups of striped field mouse. No “fixed” differences between them in RAPD spectra were found, and none of the used statistical methods permitted to distinguish with absolute certainty animals from the two range parts. Thus, genetic isolation of the European-Siberian and the Far Eastern population groups of A. agrarius is not strict. These results support the hypothesis on recent dispersal of striped field mouse from East to West Palearctics (during the Holocene climatic optimum, 7000 to 4500 years ago) and subsequent disjunction of the species range (not earlier than 4000–4500 years ago). The Far Eastern population group is more polymorphic than the European-Siberian one, while genetic heterogeneity is more uniformly distributed within it. This is probably explained by both historical events that happened during the species dispersal in the past, and different environmental conditions for the species in different parts of its range. The Far Eastern population group inhabits the area close to the distribution center of A. agrarius. It is likely that this group preserved genetic variation of the formerly integral ancestral form, while some amount of genetic polymorphism could be lost during the species colonization of the Siberian and European areas. To date, the settlement density and population number in general are higher than within the European-Siberian isolate, which seems to account for closer interpopulation associations, intense genetic exchange, and “smoothing” of polymorphism within the Far Eastern population group of A. agrarius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Argiropulo, A.I., Family Muridae (Mice), in Fauna SSSR. Mlekopitayushchie (Fauna of the USSR: Mammals), Leningrad: Akad. Nauk SSSR, 1940, vol. 3, issue 5, pp. 1–169.

    Google Scholar 

  2. Corbet, G.B., The Mammals of the Palaearctic Region: A Taxonomic Review, London: Cornell Univ. Press, 1978.

    Google Scholar 

  3. Karaseva, E.V., Tikhonova, G.N., and Bogomolov, P.L., Striped Field Mice (Apodemus agrarius) Distributional Range in the USSR and Habitat Specificity in Different Parts of the Range, Zool. Zh., 1992, vol. 71, no. 6, pp. 106–115.

    Google Scholar 

  4. Gromov, I.M. and Erbaeva, M.A., Mlekopitayushchie fauny Rossii i sopredel’nykh territorii. Zaitseobraznye i gryzuny (Mammals of the USSR and Neighboring Territories: Hares and Rodents), St. Petersburg, 1995.

  5. Pavlenko, M.V., Protein Polymorphism and Systematics of the Genus Apodemus, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Vladivostok, 1997.

  6. Mitchell-Jones, A.J., Amori, G., Bogdanowicz, W., et al., Atlas of European Mammals, London: Academic, 1999.

    Google Scholar 

  7. Musser, G.G. and Carleton, M.D., Family Muridae, Mammal Species of the World: A Taxonomic and Geographic Reference, Wilson, D.E. and Reeder, D.M., Eds., Smithsonian Inst., 2nd ed., 1993, pp. 501–755.

  8. Pavlinov, I.Ya., Yakhontov, E.L., and Agadzhanyan, A.K., Mlekopitayushchie Evrazii (sistematiko-geograficheskii spravochnik), T. 1: Rodentia (Mammals of Eurasia: A Systematic and Geographic Handbook, vol. 1: Rodentia), Moscow: Mosk. Gos. Univ., 1995.

    Google Scholar 

  9. Ellerman, J.R. and Morrison-Scott, T.C.S., Checklist of Palaearctic and Indian Mammals, 1758 to 1946, London: British Museum, 1951.

    Google Scholar 

  10. Corbet, G.B. and Hill, J.E., The Mammals of the Indomalayan Region: A Systematic Review, Oxford: Univ. Press, 1992.

    Google Scholar 

  11. Musser, G.G., Brothers, E.M., Carleton, M.D., and Hutterer, R., Taxonomy and Distributional Records of Oriental and European Apodemus, with a Review of the Apodemus-Sylvaemus Problem, Bonner zoologische Beitrage, 1996, vol. 46, nos. 1–4, pp. 143–190.

    Google Scholar 

  12. Suzuki, H., Sato, J.J., Tsuchiya, K., et al., Molecular Phylogeny of Wood Mice (Apodemus, Muridae) in East Asia, Biol. J. Linn. Soc., 2003, vol. 80, pp. 469–481.

    Article  Google Scholar 

  13. Boyeskorov, G., Timm, U., and Lyapunova, E., Karyological Study of Two Apodemus Species (Rodentia, Muridae) from the Baltic Countries, Proc. First Baltic Theriological Conference: Acta et Commentationes, Univ. Tartuensis, 1992, issue 955, pp. 81–87.

  14. Boeskorov, G.G., Kartavtseva, I.V., Zagorodnyuk, I.V., et al., Nucleolus Organizer Regions and B-Chromosomes of Wood Mice (Mammalia, Rodentia, Apodemus), Russ. J. Genet., 1995, vol. 31, no. 2, pp. 156–163.

    CAS  Google Scholar 

  15. Kartavtseva, I.V. and Pavlenko, M.V., Chromosome Variation in the Striped Field Mouse Apodemus agrarius (Rodentia: Muridae), Rus. J. Genetics, 2000, vol. 36, no. 2, pp. 162–174.

    CAS  Google Scholar 

  16. Kartavtseva, I.V., Kariosistematika lesnykh i polevykh myshei (Rodentia: Muridae) (Karyosystematics of Wood and Field Mice (Rodentia: Muridae)), Vladivostok: Dal’nauka, 2002.

    Google Scholar 

  17. Soldatović, B., Dulić, B., Savić, I., Rimsa, D. Hromozomi Dve Vrste Roda Apodemus (A. agrarius i A. mystacinus—Mammalia, Rodentia) iz Jugoslavije, Arhiv Bioločkih Nauka (Beograd), 1969, vol. 21, nos. 1–4, pp. 27–32.

    Google Scholar 

  18. Soldatović, B., Savić, I., Dulić, B., et al., Prilog Poznavanju Kariotipa Roda Apodemus Kaup, 1829 (Mammalia, Rodentia), Arhiv Bioločkih Nauka (Beograd), 1972, vol. 24, nos. 3–4, pp. 125–130.

    Google Scholar 

  19. Soldatović, B., Savić, I., Seth, P., et al., Comparative Karyological Study of the Genus Apodemus (Kaup, 1829), Acta Veterinaria (Beograd), 1975, vol. 25, no. 1, pp. 1–10.

    Google Scholar 

  20. Koh, H.S., Systematic Studies of Korean Rodents: III. Morphometric and Chromosomal Analyses of Striped Field Mice, Apodemus agrarius chejuensis Jones and Johnson, from Jeju-Do, Korean J. Syst. Zool., 1987, vol. 3, no. 1, pp. 24–40.

    Google Scholar 

  21. Koh, H.S., Systematic Studies of Korean Rodents: V. Morphometric and Chromosomal Analyses of Island Populations of Striped Field Mice (Apodemus agrarius coreae) in Southwestern Coasts of the Korean Peninsula, Korean J. Syst. Zool., 1989, vol. 5, no. 1, pp. 1–12.

    Google Scholar 

  22. Bulatova, N.Sh., Nadjafova, R.S., and Kozlovsky, A.I., Cytotaxonomic Analysis of Species of the Genera Mus, Apodemus and Rattus in Azerbaijan, Zeitschrift Zool. Syst. Evol. Forschung, 1991, vol. 29, no. 2, pp. 139–153.

    Google Scholar 

  23. Mezhzherin, S.V. and Zykov, A.E., Genetic Divergence and Allozyme Variability in Mice of the Genus Apodemus sensu lato (Muridae, Rodentia), Tsitol. Genet., 1991, vol. 25, no. 4, pp. 51–59.

    PubMed  CAS  Google Scholar 

  24. Bogdanov, A.S., Study of the Early Divergence Stages in a Group of Wood and Field Mice Using Molecular Genetic Methods, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow, 2002.

  25. David, A.I., Development and Biogeographic Characters of Anthropogen Theriofauna in Moldavia, Extended Abstract of Doctoral (Biol.) Dissertation, Kiev, 1975.

  26. David, A.I. and Chemyrtan, G.D., History of Theriofauna Development in Holocene of Moldavia, in Istoriya biogeotsenozov SSSR v golotsene (Biogeocoena History of the USSR during Holocene), Moscow: Nauka, 1976, pp. 207–213.

    Google Scholar 

  27. Ivakina, N.V., Strukova, T.V., Borodin, A.V., and Stefanovskii, V.V., Some Data on Formation of Contemporary Ecosystems of Middle and South Transurals, Paleontologic. Zh., 1997, no. 3, pp. 25–29.

  28. Chernukha, Yu.G., Evdokimova, O.A., and Chekhovich, A.V., The Results of Karyologic and Immunobiological Study of Striped Field Mouse Apodemus agraius from Different Parts of the Geographical Range, Zool. Zh., 1986, vol. 65, no. 3, pp. 471–475.

    Google Scholar 

  29. Suzuki, H., Tsuchiya, K., Sakaizumi, M., et al., Differentiation of Restriction Sites in Ribosomal DNA in the Genus Apodemus, Biochem. Genet., 1990, vol. 28, nos. 3/4, pp. 137–149.

    Article  PubMed  CAS  Google Scholar 

  30. Koh, S.H. and Yoo, B.S., Variation of Mitochondrial DNA in Two Subspecies of Striped Field Mouse, Apodemus agrarius coreae and Apodemus agrarius chejuensis, from Korea, Korean J. Zool, 1992, vol. 35, pp. 332–338.

    CAS  Google Scholar 

  31. Koh, S.H., Yoo, S.K., Kim, S.B., and Yoo, B.S., Variation of Mitochondrial DNA in Striped Field Mice, Apodemus agrarius coreae Thomas (Mammalia, Rodentia), from the Korean Peninsula, Korean J. Syst. Zool., 1993, vol. 9, no. 2, pp. 171–179.

    Google Scholar 

  32. Han, S.H., Wakana, Sh., Suzuki, H., et al., Variation of the Mitochondrial DNA and the Nuclear Ribosomal DNA in the Striped Field Mouse Apodemus agrarius on the Mainland and Offshore Islands of South Korea, Mammal Study, 1996, vol. 21, pp. 125–136.

    Google Scholar 

  33. Makova, K.D., Nekrutenko, A., and Baker, R.J., Evolution of Microsatellite Alleles in Four Species of Mice (Genus Apodemus), J. Mol. Evol., 2000, vol. 51, no. 2, pp. 166–172.

    PubMed  CAS  Google Scholar 

  34. Koh, H.S., Lee, W.-J., and Kocher, T.D., The Genetic Relationships of Two Subspecies of Striped Field Mice, Apodemus agrarius coreae and Apodemus agrarius chejuensis, Heredity, 2000, vol. 85, pp. 30–36.

    Article  PubMed  Google Scholar 

  35. Maniatis, T., Sambrook, J., and Fritsch, E.F., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab., 1982.

    Google Scholar 

  36. Williams, J.G.K., Kubelik, A.R., Livak, J.K., et al., DNA Polymorphisms Amplified by Arbitrary Primers Are Useful as Genetic Markers, Nucleic Acids Res., 1990, vol. 18, pp. 6531–6535.

    Article  PubMed  CAS  Google Scholar 

  37. Curtsinger, J.W., Fukui, H.H., Resler, A.S., et al., Genetic Analysis of Extended Life Span in Drosophila melanogaster: I. RAPD Screen for Genetic Divergence between Selected and Control Lines, Genetica, 1998, vol. 104, pp. 21–32.

    Article  PubMed  CAS  Google Scholar 

  38. Pokrovskii, V.V., Fedorov, N.A., Shipulin, G.A., et al., Metodicheskie rekomendatsii po provedeniyu rabot v diagnosticheskikh laboratoriyakh, ispol’zuyushchikh metod polimeraznoi tsepnoi reaktsii (Methodic Guidelines for Diagnostic Laboratory Experiments with Polymerase Chain Reaction), Moscow: Gos. Komitet Sanitarno-Epidemiol. Nadzora RF, 1995.

    Google Scholar 

  39. Nei, M., Estimation of Average Heterozygosity and Genetic Distance from a Small Number of Individuals, Genetics, 1978, vol. 89, no. 3, pp. 583–590.

    PubMed  Google Scholar 

  40. Nei, M., Analysis of Gene Diversity in Subdivided Populations, Proc. Natl. Acad. Sci. USA, 1973, vol. 70, no. 12, pp. 3321–3323.

    Article  PubMed  CAS  Google Scholar 

  41. Nei, M., Genetic Distance between Populations, Am. Nat., 1972, vol. 106, no. 949, pp. 283–292.

    Article  Google Scholar 

  42. Borovikov, V.P., Populyarnoe vvedenie v programmu Statistica (Popular Introduction to the Statistica Program), Moscow: Komp’yuter Press, 1998.

    Google Scholar 

  43. Yeh, F.C. and Boyle, T.B.J., Population Genetic Analysis of Co-Dominant and Dominant Markers and Quantitative Traits, Belgian J. Botany, 1997, vol. 129, p. 159.

    Google Scholar 

  44. Rohlf, J.F., Numerical Taxonomy System of Multivariate Statistical Programs (NTSYS-pc), 1992.

  45. Miller, M.P., Tools for Population Genetics Analyses (TFPGA): A Windows Program for the Analysis of Allozyme and Molecular Population Genetic Data, Version 1.3, Computer Software Distributed by Author, 1997.

  46. Van de Peer, Y. and de Wachter, R., TREECON for Windows: A Software Package for the Constructions and Drawing of Evolutionary Trees for the Microsoft Windows Environment, Comput. Appl. Biosci., 1994, vol. 10, pp. 569–570.

    PubMed  Google Scholar 

  47. Van de Peer, Y. and de Wachter, R., Construction of Evolutionary Distance Trees with TREECON for Windows: Accounting for Variation in Nucleotide Substitution Rate Among Sites, Comput. Appl. Biosci., 1997, vol. 13, pp. 227–230.

    PubMed  Google Scholar 

  48. Mezhzherin, S.V., Genetic and Taxonomic Homogeneity of the East Asian Mouse Alsomys major (Rodentia, Muridae), Vestn. Zool., 2001, vol. 35, no. 2, pp. 43–48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © D.M. Atopkin, A.S. Bogdanov, G.N. Chelomina, 2007, published in Genetika, 2007, vol. 43, No. 6, pp. 804–817.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atopkin, D.M., Bogdanov, A.S. & Chelomina, G.N. Genetic variation and differentiation in striped field mouse Apodemus agrarius inferred from RAPD-PCR analysis. Russ J Genet 43, 665–676 (2007). https://doi.org/10.1134/S1022795407060105

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795407060105

Keywords

Navigation