Skip to main content
Log in

Quantitative Geomorphic Approach for Identifying Active Deformation in the Foreland Region of Central Indo-Nepal Himalaya

  • Published:
Geotectonics Aims and scope

Abstract

Globally the remote sensing and geomorphometric analysis are frequently used for the assessment of tectonic activity. We used satellite-driven DEM data to analyze regional scale fluvial landform development in the parts of the central section of the Indo-Nepal Himalayan mountain chain, which is attributed the active deformation along the strike of major thrust. This deformation is accompanied by coexisting river incision and base-level fall along the longitudinal river course. These anomalies are obtained through conventional geomorphic parameters namely, stream-gradient index (SL), and steepness index (Ks) along with a new method called river Gradient Length Anomaly (GLA) analysis. GLA is a lied to deduct surface uplift and subsidence at the intersection between drainage basin and active thrusts. The deviations (offset) occurred along the river course are attributed to long-term active tectonic movement along thrust/fault or because of erosion/sedimentation processes. We analyzed 16 south-flowing rivers (e.g. Sarda, Kauriala, Girwa, and Babai), across the major Himalayan thrusts such as Main Boundary Thrust (MBT), Ramgarh Thrust (RT) and Himalayan Frontal Fault (HFT). The computed values of SL along the longitudinal course of these rivers range between 0.9‒4153 and Ks ranges from 0.1 to 173. The anomalous rise of SL and Ks values close to the major thrust points toward ongoing tectonics in the basin. The estimated results of fault parameters show that the horizontal shortening is higher than the vertical uplift. The empirical relationship of slip rate along the fault segments is estimated as 1.21, 2.65 and 1.084 mm/y respectively. Based on fault parameter, and abnormal GLA, SL and Ks analysis, and slip rate, a new E‒W oriented active fault structure have been inferred, which passes through the Beldandi, Bilsan, Bachua, Nandgaon, Dhagadhi Surat Nagar, and Bhagwanpur locations. The combined results of the present investigation can be used for evaluation of seismic hazard in the central section of Indo‒Nepal Himalayan front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. J. Adams, “Active tilting of the United States mid-continent: Geodetic and geomorphic evidence,” Geology 8, 442‒446 (1980).

    Article  Google Scholar 

  2. K. K. Agarwal and G. K. Agrawal, “Effects of erosion on stable thrust wedges: A new perspective in sandbox analogue modeling,” Current Sci. 87, 235‒239 (2004).

    Google Scholar 

  3. K. K. Agarwal, R. Bali, M. G. Kumar, P. Srivastava, and P. V. Singh, “Active tectonics in and around Kimin-Ziro area, Lower Subansiri District, Arunachal Pradesh, NE India,” Z. Geomorphol. 53, 109–120 (2009).

    Article  Google Scholar 

  4. K. K. Agarwal and V. K. Sharma, “Quaternary tiltblock tectonics in parts of Eastern Kumaun Himalaya, India,” Z. Geomorphol. 55, 197–208 (2011).

    Article  Google Scholar 

  5. K. K. Agarwal, R. Srivastava, and S. Mishra, “Himalayan orogen–Ganga plain foreland interaction: A study based on finite element modeling,” J. Paleontol. Soc. India 2, 83‒89 (2005).

    Google Scholar 

  6. K. K. Agarwal, I. B. Singh, M. Sharma, S. Sharma, and G. Rajagopalan, “Extensional Tectonic activity in the Cratonward parts (peripheral bulge) of the Ganga Plain Foreland Basin, India,” Int. J. Earth Sci. 91, 897‒905 (2002).

    Article  Google Scholar 

  7. K. K. Agarwal, C. Prakash, S. N. Ali, and N. Jahan, “Morphometric analysis of the Ladhiya and Lohawati River basins, Kumaun Lesser Himalaya, India,” Z. Geomorphol. 56, 201–224 (2012).

    Article  Google Scholar 

  8. C. B. Amos, D. W. Burbank, and S. A. L. Read, “Along-strike growth of the Ostler fault, New Zealand: Consequences for drainage deflection above active thrusts,” Tectonics 29 (2010). https://doi.org/10.1029/2009TC002613

  9. R. Bali, K. K. Agarwal, S. N. Ali, S. K. Rastogi, and K. Krishna, “Drainage morphometry of Himalayan Glacio-fluvial basin, India: Hydrologic and Neotectonic implications,” Environ. Earth Sci. 66, 1163–1174 (2011).

    Article  Google Scholar 

  10. R. P. Bashyal, “Petroleum exploration in Nepal,” J. Nepal Geol. Soc. 18 19‒24 (1998).

    Google Scholar 

  11. R. Bilham, “Earthquakes in India and the Himalaya: Tectonics, geodesy and history,” Ann. Geophys. 47, 839‒858 (2004).

    Google Scholar 

  12. R. Bilham, P. Bodin and M. Jackson, “Entertaining a great earthquake in Western Nepal: Historic inactivity and geodetic tests for the development of strain,” J. Nepal Geol. Soc. 11, 73‒88 (1995).

    Google Scholar 

  13. R. Bilham, K. Larson, and J. Freymueller, “Project Idylhim members, GPS measurements of present-day convergence across the Nepal Himalaya,” Nature 386, 61‒64 (1997).

    Article  Google Scholar 

  14. K. Bjørlykke, “Effects of compaction processes on stresses, faults, and fluid flow in sedimentary basins: Examples from the Norwegian margin,” in Analogue and Numerical Modelling of Crustal-Scale Processes, Vol. 253 of Geol. Soc. London, Spec. Publ., Ed. by S. J. H. Buiter and G. Schreurs (London, 2006), pp. 359‒379.

  15. L. Bollinger, P. Tapponnier, S. N. Sapkota, and Y. Klinger, “Slip deficit in Central Nepal: Omen for a repeat of the 1344 AD earthquake?,” Earth Planets Space 68 (2016). https://doi.org/10.1186/s40623-016-0389-1

  16. S. J. Caskey, “Geometric relations of dip slip to a faulted ground surface: New nomograms for estimating components of fault displacement” J. Struct. Geol. 17, 197‒202 (1995).

    Article  Google Scholar 

  17. J. Célérier, T. M. Harrison, A. A. G. Webb, and A. Yin, “The Kumaun and Garhwal Lesser Himalaya, India: Part 1. Structure and stratigraphy,” Geol. Soc. Am. Bull. 121, 1262‒1280 (2009).

    Article  Google Scholar 

  18. J. Célérier, T. M. Harrison, O. Beyssac, F. Herman, W. J. Dunlap, and A. A. G. Webb, “The Kumaun and Garwhal Lesser Himalaya, India: Part 2 Thermal and deformation histories,” Geol. Soc. Am. Bull. 121, 1281–1297 (2009).

    Article  Google Scholar 

  19. P. G. Decelles, G. E. Gehrels, J. Quade, T. P. Ojha, P. A. Kappa, and B. N. Upreti, “Neogene foreland basin deposits erosional unroofing and the kinematic history of the Himalayan fold-thrust belt, western Nepal,” Geol. Soc. Am. Bull. 110, 2–21 (1998).

    Article  Google Scholar 

  20. A. Divyadarshini and V. Singh, “Identifying active structures in the Chitwan Dun, Central Nepal, using longitudinal river profiles and SL index analysis,” Quat. Int. 462, 176‒193 (2017).

    Article  Google Scholar 

  21. D. Germanoski and S. A. Schumm, “Change in braided river morphology resulting from aggradation and degradation,” J. Geol. 101, 451‒466 (1993).

    Article  Google Scholar 

  22. S. K. Ghosh and R. Kumar, “Petrography of Neogene Siwalik sandstone of the Himalayan Foreland Basin, Garhwal Himalaya: Implications for source area tectonics and climate,” J. Geol. Soc. India 55, 1‒15 (2000).

    Google Scholar 

  23. P. Ghosh, S. Sinha, and A. Misra, “Morphometric properties of the trans-Himalayan river catchments: Clues towards a relative chronology of orogen-wide drainage integration,” Geomorphology 233, 127‒141 (2015).

    Article  Google Scholar 

  24. J. E. Spurr and H. B. Goodrich, Geology of the Yukon Gold District, Alaska, Vol. 18-III of U. S. Geol. Surv., Ann. Rep. (1887).

  25. P. K. Goswami and T. Deopa, “Quaternary block-tilting in southern Himalayan ranges of eastern Uttarakhand, India,” Z. Geomorphol. 57, 45–60 (2012).

    Article  Google Scholar 

  26. P. K. Goswami and C. C. Pant, “Geomorphology and tectonics of Kota–Pawalgarh Duns, Central Kumaun Sub-Himalaya,” Current Sci. 92, 685‒690 (2007).

    Google Scholar 

  27. P. K. Goswami and A. Yhokha, “Geomorphic evolution of the Piedmont Zone of the Ganga Plain, India: A study based on remote sensing, GIS and field investigation,” Int. J. Remote Sens. 31, 5349‒5364 (2010).

    Article  Google Scholar 

  28. T. J. Hack, “Stream-profile analysis and stream-gradient index,” J. Res. U.S. Geol. Surv. 1, 421–429 (1973).

    Google Scholar 

  29. J. Holbrook and S. A. Schumm, “Geomorphic and sedimentary response of rivers to tectonic deformation: A brief review and critique of a tool for recognizing subtle epeirogenic deformation in modern and ancient settings,” Tectonophysics 385, 286–306 (1999).

    Google Scholar 

  30. A. D. Howard, “Drainage analysis in geologic interpretation: A summary,” Am. Assoc. Petrol. Geol. 51, 2246–2259 (1967).

    Google Scholar 

  31. R. Jaayangondaperumal, V. C. Thakur, V. Joevivek, P. S. Rao, and A. K. Gupta, Active Tectonics of Kumaun and Garhwal Himalaya (Springer, Singapore, 2018).

    Book  Google Scholar 

  32. M. Jackson and R. Bilham, “Constraints on Himalayan deformation inferred from vertical velocity fields in Nepal and Tibet,” J. Geophys. Res.: Solid Earth 99, 13 897‒13 912 (1994).

    Article  Google Scholar 

  33. M. Joshi and V. C. Thakur, “Signatures of 1905 Kangra and 1555 Kashmir earthquakes in medieval period temples of Chamba region, Northwest Himalaya,” Seismol. Res. Lett. 87, 1150‒1160 (2016).

    Article  Google Scholar 

  34. F. Jouanne, J. L. Mugnie, J. F. Gamond, P. Le Fort, M. R. Pandey, L. Bollinger, M. Flouzat and J. P. Avouac, “Current shortening across the Himalayas of Nepal,” Geophys. J. Int. 157 (2004). https://doi.org/10.1111/j.1365-246X.2004.02180.x

  35. E. A. Keller and N. Pinter, Active Tectonics: Earthquakes Uplift and Landscapes (Prentice-Hall, Saddle River, N.J., 1996).

    Google Scholar 

  36. K. N. Khattri, “Great earthquakes, seismicity gaps and potential for earthquake disaster along the Himalaya plate boundary,” Tectonophysics 138, 79–92 (1987).

    Article  Google Scholar 

  37. G. C. Kothyari, “Morphometric analysis of tectonically active Pindar and Saryu River Basins: Central Kumaun Himalaya,” Z. Geomorphol. 59, 421–442 (2015).

    Article  Google Scholar 

  38. G. C. Kothyari and K. Luirei, “Late Quaternary tectonic landforms and fluvial aggradation in the Saryu River valley: Central Kumaun Himalaya,” Geomorphology 268, 159‒176 (2016).

    Article  Google Scholar 

  39. G. C. Kothyari, P. D. Pant, M. Joshi, K. Luirei, and J. Malik, “Active faulting and deformation of Quaternary landform Sub-Himalaya, India,” Geochronometria 37, 63‒71 (2010).

    Article  Google Scholar 

  40. G. C. Kothyari, B. K. Rastogi, P. Morthekai, R. K. Dumka, and R. S. Kandregula, “Active segmentation assessment of the tectonically active South Wagad Fault in Kachchh, Western Peninsular India,” Geomorphology 253, 491–507 (2016).

    Article  Google Scholar 

  41. G. C. Kothyari, A. D. Shukla and N. Juyal, “Reconstruction of Late Quaternary climate and seismicity using fluvial landforms in Pindar River valley, Central Himalaya, Uttarakhand, India,” Quatern. Int. 443, 248–264 (2017).

    Article  Google Scholar 

  42. G. C. Kothyari, R. S. Kandregula, and K. Luirei, “Morphotectonic records of neotectonic activity in the vicinity of North Almora Thrust Zone, Central Kumaun Himalaya,” Geomorphology 285, 272‒286 (2017).

    Article  Google Scholar 

  43. G. C. Kothyari, N. Joshi, A. K. Taloor, R. S. Kandregula, B. S. Kotlia, C. C. Pant, and R. K. Singh, “Landscape evolution and deduction of surface deformation in the Soan Dun, NW Himalaya, India,” Quat. Int. 507, 302‒323 (2019).

    Article  Google Scholar 

  44. S. Kumar, S. G. Wesnousky, T. K. Rockwell, D. Ragona, V. C. Thakur and G. G. Seitz, “Earthquake recurrence and rupture dynamics of Himalayan Frontal Thrust, India,” Science 294, 2328‒2331 (2001).

    Article  Google Scholar 

  45. S. Kumar, S. G. Wesnousky, R. Jauangondaperumal, T. Namata, Y. Kumahara, and V. Singh, “Paleoseismological evidence of surface faulting along the northeastern Himalayan front, India: Timing, size, and spatial extent of great earthquakes,” J. Geophys. Res.: Solid Earth 115 (2010). https://doi.org/10.1029/2009JB006789

  46. J. Lave and J. P. Avouac, “Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of Central Nepal,” J. Geophys. Res.: Solid Earth 105, 5735‒5770 (2000).

    Article  Google Scholar 

  47. J. Lave, D. Yule, S. Sapkota, K. Basant, C. Madden, M. Attal, and M. R. Pandey, “Evidence of the Great Medieval earthquake (nearly 1100 AD) in the Central Nepal,” Science 307, 1302‒1305 (2005).

    Article  Google Scholar 

  48. K. Luirei, S. S. Bhakuni, and G. C. Kothyari, “Drainage response to active tectonics and evolution of tectonic geomorphology across the Himalayan Frontal Thrust, Kumaun Himalaya,” Geomorphology 239, 58–72 (2016).

    Article  Google Scholar 

  49. T. Matsuda, “Strike-slip faulting along the Atera Fault, Japan,” Univ. Tokyo, Earthquake Res. Inst. Bull. 44, 103‒111 (1966).

    Google Scholar 

  50. T. Matsuda, “Active fault assessment for Irozaki Fault System, Izu Peninsula,” in Reports on the Earthquake of the Izu Peninsula in 1974, and Disaster, Ed. by R. Tsuchi (Minist. Educ., Tokyo, 1975), pp. 121‒125.

    Google Scholar 

  51. J. L. Mugnier, P. Leturmy, G. Mascle, P. Huyghe, E. Chalaron, G. Vidal, L. Husson, and B. Delcaillau, “The Siwaliks of Western Nepal: I. Geometry and kinematics,” J. Asian Earth Sci. 17, 629‒642 (1999).

    Article  Google Scholar 

  52. J. L. Mugnier, P. Huyghe, A. P. Gajurel, and D. Becel, “Frontal and Piggy-back seismic ruptures in the external thrust belt of Western Nepal,” J. Asian Earth Sci. 25, 707‒717 (2005).

    Article  Google Scholar 

  53. T. Nakata, “Geomorphic history and crustal movements of the foothills of the Himalayas,” Tohoku Univ. Sci. Rep. 22 (7), 39–177 (1972).

    Google Scholar 

  54. T. Nakata, “On quaternary tectonics around the Himalayas,” Tohoku Univ. Sci. Rep. 25, 111–118 (1975).

    Google Scholar 

  55. T. Nakata and Y. Kumahara, “Active faulting across the Himalaya and its significance in the collision tectonics,” Active Fault Res. 22, 7–16 (2002).

    Google Scholar 

  56. G. Philip, S. S. Bhakuni, and N. Suresh, “Late Pleistocene and Holocene large magnitude earthquakes along Himalayan Frontal Thrust in the Central Seismic Gap in NW Himalaya, Kala Amb, India,” Tectonophysics 580, 162–177 (2012).

    Article  Google Scholar 

  57. C. Prakash, K. K. Agarwal, and V. K. Sharma, “Structural control of landslides in Eastern Kumaun Himalaya: Case study from Sukhidhang-Ladhiya section,” J. Geol. Soc. India 86, 507‒512 (2015).

    Article  Google Scholar 

  58. R. Raj, “Strike slip faulting inferred from offsetting of drainages: Lower Narmada basin, western India,” J. Earth Syst. Sci. 116, 413–421 (2007).

    Article  Google Scholar 

  59. D. R. Russ, “Style and significance of surface deformation in the vicinity of New Madrid, Missouri,” in Investigations of the New Madrid, Missouri, Earthquake Region, No. 1236 of U.S. Geol. Surv. Prof. Pap., Ed. by F. A. McKeown and L. C. Parker (1982), pp. 95‒114.

  60. S. A. Schumm, The Fluvial System (Wiley, New York, 1977).

    Google Scholar 

  61. L. Seeber and J. G. Armbruster, “Great detachment earthquakes along the Himalayan arc and long term forecasting,” in Earthquake Prediction: An International Review, Vol. 4 of Maurice Ewing Ser., Ed. by D. W. Simpson and P. G. Richards (Am. Geophys. Union, 1981), pp. 259‒277.

  62. B. Singh, “Geological evolution of Ganga Plain—an overview,” J. Palaeontol. Soc. India 41, 99–137 (1996).

    Google Scholar 

  63. G. S. Srivastava, A. K. Kulshresth, and K. K. Agarwal, “Morphometric evidences of neotectonic block movement in Yamuna Tear Zone of Outer Himalaya, India,” Z. Geomorphol. 57, 471–484 (2013).

    Article  Google Scholar 

  64. P. Srivastava, Y. Ray, B. Phartiyal, and Y. P. Sundriyal, “Rivers in the Himalaya: Responses to neotectonics and past climate,” Proc. Indian Natl. Sci. Acad. 82, 763‒772 (2016).

    Article  Google Scholar 

  65. I. S. Stewart and P. L. Hancock, “What is a fault scarp?,” Episodes 4, 256‒263 (1991).

    Google Scholar 

  66. R. Talukdar, G. C. Kothyari, and C. C. Pant, “Evaluation of neotectonic variability along major Himalayan thrusts within the Kali River basin using geomorphic markers, Central Kumaun Himalaya, India,” Geol. J. 55, 821‒844 (2019).

    Article  Google Scholar 

  67. V. C. Thakur and A. K. Pandey, “Active deformation of Himalayan Frontal Thrust and Piedmont Zone south of Dehradun in respect of seismotectonics of Garhwal Himalaya,” Himalayan Geol. 25, 23–31 (2004).

    Google Scholar 

  68. V. C. Thakur, M. Joshi, D. Sahoo, N. Suresh, R. Jayangondapermal, and A. Singh, “Partitioning of convergence in Northwest Sub-Himalaya, estimation of late Quaternary uplift and convergence rates across the Kangra reentrant, North India,” Int. J. Earth Sci. 103, 1037‒1056 (2014).

    Article  Google Scholar 

  69. C. R. Twidale, “Late Cenozoic activity of the Selwyn upwarp, Northwest Queensland,” J. Geol. Soc. Aust. 13, 491‒494 (1966).

    Article  Google Scholar 

  70. B. N. Upreti, “An overview of the stratigraphy and tectonics of the Nepal Himalaya,” J. Asian Earth Sci. 17, 577‒606 (1999).

    Article  Google Scholar 

  71. K. S. Valdiya, Geology of Kumaun Lesser Himalaya (Wadia Inst. Himalayan Geol, 1980).

  72. K. S. Valdiya, “Tectonics and evolution of the central sector of the Himalaya,” Philos. Trans. R. Soc. London., Ser. A 326, 151‒175 (1988).

    Google Scholar 

  73. P. Vanicek and D. Nagy, “The map of contemporary vertical crustal movements in Canada,” EOS, Trans. Am. Geophys. Union 61, 145‒147 (1980).

    Article  Google Scholar 

  74. R. E. Wallace, “Profiles and ages of young fault scarps, north-central Nevada,” Geol. Soc. Am. Bull. 88, 1267‒1281 (1977).

    Article  Google Scholar 

  75. D. M. Welch, “Channel form and bank erosion, Red River, Manitoba,” in Fluvial Processes and Sedimentation: Proceedings of the Hydrology Symposium, Edmonton, Canada,1973, pp. 284‒293.

  76. X. Whipple, R. A. DiBiase, and B. T. Crosby, “Bedrock rivers,” in Fluvial Geomorphology, Vol. 9 of Treatise on Geomorphology, Ed. by J. Shroder and E. Wohl (Academic Press, San Diego, 2013), pp. 550–573.

  77. A. C. Whittaker, P. A. Cowie, M. Attal, G. E. Tucker, and G. P. Roberts, “Bedrock channel adjustment to tectonic forcing: Implications for predicting river incision rates,” Geology 35, 103‒106 (2007).

    Article  Google Scholar 

  78. X. Yang, W. Li, and Z. Qin, “Calculation of reverse-fault-related parameters using topographic profiles and fault bedding,” Geod. Geodyn. 6, 106‒112 (2015).

    Article  Google Scholar 

  79. E. R. Zernitz, “Drainage patterns and their significance,” J. Geol. 40, 498‒521 (1932).

    Article  Google Scholar 

  80. L. Žibret and G. Žibret, “Use of geomorphological indicators for the detection of active faults in southern part of Ljubljana moor, Slovenia,” Acta Geogr. Slov. 54, 271–291 (2014).

    Google Scholar 

  81. G. Žibret and L. Žibret, “River gradient anomalies reveal recent tectonic movements when assuming an exponential gradient decrease along a river course,” Geomorphology 281, 43‒52 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

A. Mishra, K.K. Agarwal and G. Joshi are thankful to Head Centre of Advanced Study in Geology, Lucknow University (India) for providing working facilities to carry out this work. G. Joshi is also thankful to CSIR, Government of India, for financial support in the form of SRF, (09/107(0394)/2018-EMR-I). G.C. Kothyari and R. Talukdar are grateful to the Ministry of Earth Sciences, Government of India (MoES/P.O. (Seismo)/1(271)/AFM/2015) for financial support under the active fault mapping program. Authors are also thankful to the reviewers Prof. E.A. Rogozhin (Shmidt Institute for Physics of the Earth of Russian Academy of Sciences, Moscow, Russia) and Prof. V.S. Imaev (Institute of the Earth Crust, Siberian Branch of Russian Academy of Sciences, Irkutsk, Russia) for their constructive comment that improved the quality of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Agarwal.

Additional information

Reviewers: E.A. Rogozhin, V.S. Imaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, A., Agarwal, K.K., Kothyari, G.C. et al. Quantitative Geomorphic Approach for Identifying Active Deformation in the Foreland Region of Central Indo-Nepal Himalaya. Geotecton. 54, 543–562 (2020). https://doi.org/10.1134/S0016852120040093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852120040093

Keywords:

Navigation