Erratum to: Observer-Aided Output Feedback Synthesis as an Optimization Problem

B. T. Polyak ${ }^{1,2 *}$ and M. V. Khlebnikov ${ }^{1,2 * *}$
${ }^{1}$ Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, 117997 Russia
${ }^{2}$ Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow oblast, 141701 Russia e-mail: *boris@ipu.ru, ** khlebnik@ipu.ru

Received September 19, 2022; revised September 19, 2022; accepted September 19, 2022
DOI: 10.1134/S0005117922110078
The article "Observer-Aided Output Feedback Synthesis as an Optimization Problem" by B. T. Polyak and M. V. Khlebnikov was originally published electronically in Springer-Link on 17 April 2022 in volume 83, issue 3, pages 303-324.

The formula for the gradient $\nabla_{L} f(K, L, \alpha)$ in Lemma 3 is given inaccurately; it should read

$$
\frac{1}{2} \nabla_{L} f(K, L, \alpha)=\rho_{L} L+M_{2}^{\mathrm{T}} Y P N_{2}^{\mathrm{T}}-\frac{1}{\alpha}\left(\begin{array}{ll}
0 & I \tag{1}
\end{array}\right) Y\binom{D}{D-L D_{1}} D_{1}^{\mathrm{T}}
$$

Below find the full derivation of this result.
For differentiation of the function $f(K, L, \alpha)$ with respect to L under a constraint in the form of the Lyapunov equation

$$
\begin{equation*}
\left(A_{K, L}+\frac{\alpha}{2} I\right) P+P\left(A_{K, L}+\frac{\alpha}{2} I\right)^{\mathrm{T}}+\frac{1}{\alpha}\binom{D}{D-L D_{1}}\binom{D}{D-L D_{1}}^{\mathrm{T}}=0 \tag{2}
\end{equation*}
$$

we give an increment of ΔL to the quantity L and denote the corresponding increment in P by ΔP,

$$
\left.\left.\begin{array}{rl}
\left(\mathcal{A}+M_{1} K N_{1}+\right. & M_{2}(L+\Delta L) N_{2}+
\end{array}\right)(P+\Delta P)\binom{\alpha}{+(P+\Delta P)(\mathcal{A}+} M_{1} K N_{1}+M_{2}(L+\Delta L) N_{2}+\frac{\alpha}{2} I\right)^{\mathrm{T}} .
$$

Leaving the notation ΔP for the principal part of the increment, we obtain

$$
\begin{aligned}
&\left(A_{K, L}+M_{2} \Delta L N_{2}+\frac{\alpha}{2} I\right) P+P\left(A_{K, L}+M_{2} \Delta L N_{2}+\frac{\alpha}{2} I\right)^{\mathrm{T}} \\
&+\left(A_{K, L}+\frac{\alpha}{2} I\right) \Delta P+\Delta P\left(A_{K, L}+\frac{\alpha}{2} I\right)^{\mathrm{T}} \\
&+\frac{1}{\alpha}\left[\binom{D}{D-L D_{1}}\binom{D}{D-L D_{1}}^{\mathrm{T}}\right.
\end{aligned} \begin{aligned}
0 & \binom{0}{\Delta L D_{1}}\binom{D}{D-L D_{1}}^{\mathrm{T}} \\
& \left.-\binom{D}{D-L D_{1}}\binom{0}{\Delta L D_{1}}^{\mathrm{T}}\right]=0 .
\end{aligned}
$$

After subtracting Eq. (2) from this equation, we have

$$
\begin{align*}
\left(A_{K, L}+\frac{\alpha}{2} I\right) \Delta P+\Delta & P\left(A_{K, L}+\frac{\alpha}{2} I\right)^{\mathrm{T}}+M_{2} \Delta L N_{2} P+P\left(M_{2} \Delta L N_{2}\right)^{\mathrm{T}} \\
& -\frac{1}{\alpha}\left[\binom{0}{\Delta L D_{1}}\binom{D}{D-L D_{1}}^{\mathrm{T}}+\binom{D}{D-L D_{1}}\binom{0}{\Delta L D_{1}}^{\mathrm{T}}\right]=0 . \tag{3}
\end{align*}
$$

Let us calculate the increment of the functional $f(K, L, \alpha)$ with respect to L by linearizing the relevant quantities,

$$
\Delta_{L} f(K, L, \alpha)=\operatorname{tr} \mathcal{C}_{2} \Delta P \mathcal{C}_{2}^{\mathrm{T}}+\rho_{L} \operatorname{tr} L^{\mathrm{T}} \Delta L+\rho_{L} \operatorname{tr}(\Delta L)^{\mathrm{T}} L=\operatorname{tr} \Delta P \mathcal{C}_{2}^{\mathrm{T}} \mathcal{C}_{2}+2 \rho_{L} \operatorname{tr} L^{\mathrm{T}} \Delta L .
$$

Consider the Lyapunov equation

$$
\begin{equation*}
\left(A_{K, L}+\frac{\alpha}{2} I\right)^{\mathrm{T}} Y+Y\left(A_{K, L}+\frac{\alpha}{2} I\right)+\mathcal{C}_{2}^{\mathrm{T}} \mathcal{C}_{2}=0 \tag{4}
\end{equation*}
$$

From the dual equations (3) and (4), we have

$$
\begin{aligned}
\Delta_{L} f(K, L, \alpha) & =2 \operatorname{tr} Y\left[M_{2} \Delta L N_{2} P-\frac{1}{\alpha}\binom{0}{\Delta L D_{1}}\binom{D}{D-L D_{1}}^{\mathrm{T}}\right]+2 \rho_{L} \operatorname{tr} L^{\mathrm{T}} \Delta L \\
& =2 \operatorname{tr}\left[N_{2} P Y M_{2} \Delta L-\frac{1}{\alpha} D_{1}\binom{D}{D-L D_{1}}^{\mathrm{T}} Y\binom{0}{I} \Delta L\right]+2 \rho_{L} \operatorname{tr} L^{\mathrm{T}} \Delta L \\
& =2\left\langle\rho_{L} L+M_{2}^{\mathrm{T}} Y P N_{2}^{\mathrm{T}}-\frac{1}{\alpha}\left(\begin{array}{cc}
0 & I
\end{array}\right) Y\binom{D}{D-L D_{1}} D_{1}^{\mathrm{T}}, \Delta L\right\rangle
\end{aligned}
$$

whence formula (1) follows.
The original article can be found online at https://doi.org/10.1134/S0005117922030018.

