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In [1], a technical error of the author in the description of the asymptotics of the series following
formula (3.1) led to the omission of a term, which resulted in its absence in the final formula.

The phrase following formula (3.21): “Consider the second summand on the right-hand side. It
follows from [19] that for the inner series, as k — oo,
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must be replaced by “Consider the second summand on the right-hand side. It follows from [19] and [21]
that, for the inner series, as k — oo
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The reference to the paper [21]is given by the reference [2] at the end of the text of this Erratum, and
the function o is defined below in the theorem.

In the present text, the revised statement of the main theorem is presented, taking into account the
missing term.

Theorem 1. Let M L be a manifold given by a functional family of smooth almost Liouville met-
rics on the sphere and defined by formulas (2.2). If q is an infinitely differentiable complex-valued
function on M L, then the eigenvalues of the operator —A + q satisfy the equality
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where
v(ML) = 2(R(v3) — Q(v2)) J(rvivi ;32)12)(3'(03) + Q' (v2))

is the Gaussian curvature of ML and

o Vg — U3
Vdetg = 4/=Q(v2)R(vs)

is the root of the determinant of the matrix of the metric tensor, S*M L is the total space of the
unit sphere bundle in the cotangent space, dv is the canonical form of the volume on S*M L, and
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here Z is the Hamiltonian vector field on the cotangent bundle T*ML \ {0} defined by the
Riemannian structure on M L,
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v is the unit vector of the normal to the geodesic T, J(r,w) is the volume density in geodesic polar

coordinates, i.e., dvol(1) = J(r,w) dr dw, and v and v are the fundamental solutions of the Jacobi

equation along the geodesic T satisfying the conditions
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