Skip to main content
Log in

Potential of microalgae as a source of bioenergy

  • Biocatalysis
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

This review deals with the current trends in the use of vegetal renewable sources of energy. Microalgal biomass is considered to be the most promising renewable raw material since microalgae grow at a high rate and exceed the other cultures in productivity. Although large-scale technologies for production of energy-rich biomass to be converted into biofuels are at their early stages of development, recent advances in this area augur commercialization of these technologies in the near future. The advanced catalytic methods being developed (such as transesterification and hydrocracking) allow the microalgal biomass to be efficiently converted into biofuels. In order to obtain high-grade hydrocarbons, it is necessary to carry out the following conversions of the microalgal lipids: hydrolysis for removal of phosphorus-containing compounds, transesterification with methanol over a heterogeneous catalyst, hydrodeoxygenation (hydrocracking), and isomerization. The existence of a wide variety of microalgae processing methods and the growing number of studies in this field suggest that microalgae have great potential as a source of bioenergy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klass, L., Biomass for Renewable Energy, Fuels and Chemicals, New York: Academic 1998, p. 495.

    Book  Google Scholar 

  2. Rustamov, N.A., Zaitsev, S.I., and Chernova, N.I., Energiya, 2005, no. 6, p. 20.

  3. Directive 2009/28/ec of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC, Off. J. Eur. Union, 2009, p. 16.

  4. Pahl, G., Biodiesel: Growing a New Energy Economy, Chelsea: Green, 2010.

    Google Scholar 

  5. Baklanova, Yu.O., Reg. Ekon. Upravl., E-Journal, 2007, no. 4 (12).

  6. Chisti, Y., Biotechnol. Adv., 2007, vol. 25, p. 294.

    Article  CAS  Google Scholar 

  7. Chisti, Y., Trends Biotechnol., 2008, vol. 3, p. 126.

    Article  Google Scholar 

  8. World Energy Outlook 2007, Paris: International Energy Agency, 2007.

  9. Shell Energy Scenarios to 2050, Hague: Shell International, 2008.

  10. Gouveia, L. and Oliveira, A.C., J. Ind. Microbiol. Biotechnol., 2009, vol. 36, no. 2, p. 269.

    Article  CAS  Google Scholar 

  11. Cohen, Z., in Production of Chemicals by Microalgae, Cohen, Z., Ed., London: Taylor and Francis, 1999, p. 1.

    Google Scholar 

  12. McDermid, K.J. and Stuercke, B., J. Appl. Phycol., 2003, vol. 15, p. 513.

    Article  CAS  Google Scholar 

  13. Zijffers, J.-W.F., Salim, S., Janssen, M., Tramper, J., and Wijffels, R.H., Chem. Eng. J., 2008, vol. 145, p. 316.

    Article  CAS  Google Scholar 

  14. Becker, E.W., Microalgae: Biotechnology and Microbiology, Cambridge: Cambridge Univ. Press, 1994.

    Google Scholar 

  15. Benemann, J., Sheehan, J., Roessler, P., and Dunahay, T., A Look Back at the Department of Energy’s Aquatic Species Program: Biodiesel from Algae, Golden, Colo.: National Renewable Energy Laboratory; 1998.

    Google Scholar 

  16. Metzger, P. and Largeau. C., Appl. Microbiol. Biotechnol., 2005, vol. 66, p. 486.

    Article  CAS  Google Scholar 

  17. Gouveia, L., Marques, A.E., da Silva, T.L., and Reis, A., J. Ind. Microbiol. Biotechnol., 2009, vol. 36, no. 6, p. 821.

    Article  CAS  Google Scholar 

  18. Matsunaga, T., Matsumoto, M., Maeda, Y., Sugiyama, H., Sato, R., and Tanaka, T., Biotechnol Lett., 2009, vol. 31, no. 9, p. 1367.

    Article  CAS  Google Scholar 

  19. Manda, S. and Mallick, N., Appl. Microbiol. Biotechnol., 2009, vol. 84, no. 2, p. 281.

    Article  Google Scholar 

  20. Radakovits, R., Jinkerson, R.E., Darzins, A., and Posewitz, M.C., Eukaryot. Cell, 2010, vol. p, no. 4, p. 486.

    Article  Google Scholar 

  21. Greenwell, H.C., Laurens, L.M., Shields, R.J., Lovitt, R.W., and Flynn, K.J., J. R. Soc. Interface, 2010, vol. 7, no. 46, p. 703.

    Article  CAS  Google Scholar 

  22. Service, R.F., Science, 2009, vol. 325, no. 5939, p. 379.

    Article  CAS  Google Scholar 

  23. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirdian, M., Posewitz, M., Seilbert, M., and Darzins, A., Plant J., 2008, vol. 54, p. 621.

    Article  CAS  Google Scholar 

  24. Richmond, A., Handbook of Microalgal Culture: Biotechnology and Applied Phycology, Oxford: Blackwell, 2003.

    Google Scholar 

  25. Rosenberg, J.N., Oyler, A.G., Wilkinson, L., and Betenbaugh, M.J., Curr. Opin. Biotechnol., 2008, vol. 19, p. 430.

    Article  CAS  Google Scholar 

  26. Douskova, I., Doucha, J., Livansky, K., Machat, J., Novak, P., Umysova, D., Zachleder, V., and Vitova, M., Appl. Microbiol. Biotechnol., 2009, vol. 82, no. 1, p. 179.

    Article  CAS  Google Scholar 

  27. Ono, E. and Cuello, J.L., Biosystems Eng., 2006, vol. 95, no. 4, p. 597.

    Article  Google Scholar 

  28. Hsueh, H.T., Chu, H., and Yu, S.T., Chemosphere, 2007, vol. 66, p. 878.

    Article  CAS  Google Scholar 

  29. Ota, M., Kato, Y., Watanabe, H., Watanabe, M., Sato, Y., Smith, R.L., and Inomata, J.H., Bioresour. Technol., 2009, vol. 100, no. 21, p. 5237.

    Article  CAS  Google Scholar 

  30. Lee, J.-S., Kim, D.-K., Lee, J.-P., Park, S.-C., Koh, J.-H., Cho, H.-S., and Kim, S.-W., Bioresour. Technol., 2002, vol. 82, p. 1.

    Article  CAS  Google Scholar 

  31. Lee, J.-Y., Yoo, C., Jun, S.-Y., Ahn, C.-Y., and Oh, H.-M., Bioresour. Technol., 2010, vol. 101, no. 1, p. S75.

    Article  CAS  Google Scholar 

  32. Mata, T.M., Martins, A.A., and Caetano, N.S., Ind. Eng. Chem. Res., 2010, vol. 49, no. 6, p. 2979.

    Google Scholar 

  33. Mendes, F.N.P. and Silveira, E.R., Phytochemistry, 1994, vol. 35, no. 6, p. 1499.

    Article  CAS  Google Scholar 

  34. Samori, C., Torri, C., Samori, G., Fabbri, D., Galletti, P., Guerrini, F., Pistocchi, R., and Tagliavini, E., Bioresour. Technol., 2010, vol. 101, no. 9, p. 3274.

    Article  CAS  Google Scholar 

  35. Stucki, S., Vogel, F., Ludwig, C., Haidu, A.G., and Brandenberger, M., Energy Environ. Sci., 2009, vol. 2, p. 535.

    Article  CAS  Google Scholar 

  36. Hallgren, A., PhD Thesis, Lund, Sweden: Lund Univ., 1996.

  37. Koningen, J. and Sjöström, K., Ind. Eng. Chem. Res., 1998, vol. 37, no. 2, p. 341.

    Article  CAS  Google Scholar 

  38. Tran, N.H., Bartletta, J.R., Kannangara, G.S.K., Milev, A.S., Volk, H., and Wilson, M.A., Fuel, 2009, vol. 89, no. 2, p. 265.

    Article  Google Scholar 

  39. Maher, K.D. and Bressler, D.C., Bioresour. Technol., 2007, vol. 98, p. 2351.

    Article  CAS  Google Scholar 

  40. Qi, Z., Jie, C., Tiejun, W., and Ying, X., Energy Convers. Manage., 2007, vol. 48, p. 87.

    Article  Google Scholar 

  41. Marcilla, A., Gómez-Siurana, A., Gomis, C., Chápul, E., Catalá, M., and Valdés, F.J., Thermochim. Acta, 2009, vol. 484, p. 41.

    Article  CAS  Google Scholar 

  42. Lotero, E., Liu, Y., Lopez, D.E., Suwannakaran, K., Bruce, D.A., and Goodwin, J.G., Ind. Eng. Chem. Res., 2005, vol. 44, p. 5353.

    Article  CAS  Google Scholar 

  43. Pinto, A.C., Guarieiro, L.L.N., Rezende, M.J.C., Ribeiro, N.M., Torres, E.A., Lopes, W.A., de P. Pereira, P.A., and de Andrade, J.B., J. Braz. Chem. Soc., 2005, vol. 16, p. 1313.

    Article  CAS  Google Scholar 

  44. Baroutian, S., Aroua, M.K., Raman, A.A.A., and Sulaiman, N.M.N.J., Chem. Eng. Data, 2008, vol. 53, p. 877.

    Article  CAS  Google Scholar 

  45. Serio, M. and Tesser, R.L., Energy Fuels, 2008, vol. 22, p. 207.

    Article  Google Scholar 

  46. Ma, F., Clements, L.D., and Hanna, M.A., Ind. Eng. Chem. Res., 1998, vol. 37, p. 3768.

    Article  CAS  Google Scholar 

  47. Yan, S., Kim, M., Mohan, S., Salley, S., and Simon, Ng.K., Appl. Catal., A, 2010, vol. 373, p. 104.

    Article  CAS  Google Scholar 

  48. Miao, X., Bioresour. Technol., 2006, vol. 97, p. 841.

    Article  CAS  Google Scholar 

  49. Demirbas, A., Energy Educ. Sci. Technol., 2007, vol. 18, p. 59.

    Google Scholar 

  50. Vicente, G., Biochem. Eng. J., 2009, vol. 48, p. 22.

    Article  CAS  Google Scholar 

  51. Gryglewicz, S., Bioresour. Technol., 1999, vol. 70, p. 249.

    Article  CAS  Google Scholar 

  52. Vicente, G., Martinez, M., and Aracil, J., Bioresour. Technol., 2004, vol. 92, p. 297.

    Article  CAS  Google Scholar 

  53. Jaeger, K.-E. and Eggert, T., Curr. Opin. Biotechnol., 2002, vol. 13, no. 4, p. 390.

    Article  CAS  Google Scholar 

  54. Ranganathan, S.V., Narasimhan, S.L., and Muthukumar, K., Bioresour. Technol., 2008, vol. 99, no. 10, p. 3975.

    Article  CAS  Google Scholar 

  55. Hillen, L.W., Pollard, G., Wake, L., and White, N., Biotechnol. Bioeng., 1982, vol. 24, p. 193.

    Article  CAS  Google Scholar 

  56. Duan, P. and Savage, P.E., Ind. Eng. Chem. Res., 2011, vol. 50, no. 1, pp. 52–61.

    Article  CAS  Google Scholar 

  57. Bykova, M.V., Bulavchenko, O.A., Ermakov, D.Yu., Lebedev, M.Yu., Yakovlev, V.A., and Parmon, V.N., Katal. Prom-sti., 2010, no. 5, p. 45.

  58. Dundich, V.O., Khromova, S.A., Ermakov, D.Yu., Lebedev, M.Yu., Novopashina, V.M., Sister, V.G., Yamchuk, A.I., and Yakovlev, V.A., Kinet. Catal., 2010, vol. 51, no. 5, p. 704.

    Article  CAS  Google Scholar 

  59. Zavarukhin, S.G., Yakovlev, V.A, Parmon, V.N., Sister, V.G., Ivannikova, E.M., and Eliseeva, O.A., Khim. Tekhnol. Topl. Masel, 2010, vol. 1, p. 3.

    Google Scholar 

  60. Dundich, V.O. and Yakovlev, V.A., Khim. Interes. Ust. Razv., 2009, vol. 17, p. 527.

    CAS  Google Scholar 

  61. Yakovlev, V.A., Khromova, S.A., Sherstyuk, O.V., Dundich, V.O., Ermakov, D.Yu., Novopashina, V.M., Lebedev, M.Yu., Bulavchenko, O., and Parmon, V.N., Catal. Today, 2009, vol. 144, p. 362.

    Article  CAS  Google Scholar 

  62. RF Patent 2356629, 2009.

  63. RF Patent 2366503, 2009.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © K.N. Sorokina, V.A. Yakovlev, A.V. Piligaev, R.G. Kukushkin, S.E. Pel’tek, N.A. Kolchanov, V.N. Parmon, 2012, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorokina, K.N., Yakovlev, V.A., Piligaev, A.V. et al. Potential of microalgae as a source of bioenergy. Catal. Ind. 4, 202–208 (2012). https://doi.org/10.1134/S2070050412030117

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050412030117

Keywords

Navigation