Skip to main content
Log in

Photochemical reduction of graphite oxide

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The spectral and photochemical properties of graphite oxide (GO) in films have been examined. The photochemical reduction of GO has been studied using optical absorption, IR and Raman spectroscopy, and mass spectroscopy. The molecular model of photoprocesses has been considered, and a domain model of photoreduction has been suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, “Graphene Based Materials: Past, Present and Future,” Progr. Mater. Sci. 56(7), 1178–1271 (2011).

    Article  CAS  Google Scholar 

  2. S. V. Morozov, K. S. Novoselov, and A. K. Geim, “Electron Transport in Graphene,” Usp. Fiz. Nauk 178(7), 776–780 (2008).

    Article  Google Scholar 

  3. O. C. Compton and S. B. T. Nguyen, “Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials,” Small 6(6), 711–723 (2010).

    Article  CAS  Google Scholar 

  4. X. Wang, L. Zhi, and K. Mullen, “Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells,” Nano Lett. 8(1), 323–327 (2008).

    Article  CAS  Google Scholar 

  5. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R.S. Ruoff, “Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide,” Carbon 45(7), 1558–1565 (2007).

    Article  CAS  Google Scholar 

  6. T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud’Homme, and L. C. Brinson, “Functionalized Graphene Sheets for Polymer Nanocomposites,” Nature Nanotechnol. 3(6), 327–331 (2008).

    Article  CAS  Google Scholar 

  7. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S.-B. T. Nguyen, and R. S. Ruoff, “Preparation and Characterization of Graphene Oxide Paper,” Nature 448(7152), 457–460 (2007).

    Article  CAS  Google Scholar 

  8. X. Wu, M. Sprinkle, X. Li, F. Ming, C. Berger, and W. A. de Heer, “Epitaxial-Graphene/Graphene-Oxide Junction: An Essential Step towards Epitaxial Graphene Electronics,” Phys. Rev. Lett. 101(2), 026801(4) (2008).

    Google Scholar 

  9. G. Eda, Y.-Y. Lin, C. Mattevi, H. Yamaguchi, H.-A. Chen, I.-S. Chen, C.-W. Chen, and M. Chhowalla, “Blue Photoluminescence from Chemically Derived Graphene Oxide,” Adv. Mater. 22(4), 505–509 (2010).

    Article  CAS  Google Scholar 

  10. L. W. K. Lee, Y.-Y. Sun, M. Lucking, Z. Chen, J. J. Zhao, and S. B. Zhang, “Graphene Oxide as an Ideal Substrate for Hydrogen Storage,” ACS Nano 3(10), 2995–3000 (2009).

    Article  Google Scholar 

  11. B. S. Paratala, B. D. Jacobson, S. Kanakia, L. D. Francis, and B. Sitharaman, “Physicochemical Characterization, and Relaxometry Studies of Micro-Graphite Oxide, Graphene Nanoplatelets, and Nanoribbons,” PLoS ONE 7(6) (2012).

  12. G. Williams, B. Seger, and P. V. Kamat, TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide,” ACS Nano 2(7), 1487–1491 (2008).

    Article  CAS  Google Scholar 

  13. G. Williams and P. V. Kamat, “Graphene-Semiconductor Nanocomposites: Excited-State Interactions between ZnO Nanoparticles and Graphene Oxide,” Langmuir 25(24), 13869–13873 (2009).

    Article  CAS  Google Scholar 

  14. H. Li, S. Pang, and X. Feng, K. Müllen, and C. Bubeck, “Polyoxometalate Assisted Photoreduction of Graphene Oxide and Its Nanocomposite Formation,” Chem. Commun. 46(34), 6243–6245 (2010).

    Article  CAS  Google Scholar 

  15. L. J. Cote, R. Cruz-Silva, and J. Huang, “Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite,” J. Am. Chem. Soc. 131(31), 11027–11032 (2009).

    Article  CAS  Google Scholar 

  16. V. Abdelsayed, S. Moussa, H. M. Hassan, H. S. Aluri, M. M. Collinson, and M. S. El-Shall, “Photothermal Deoxygenation of Graphite Oxide with Laser Excitation in Solution and Graphene-Aided Increase in Water Temperature,” J. Phys. Chem. Lett. 1(19), 2804–2809 (2010).

    Article  CAS  Google Scholar 

  17. L. Huang, Y. Liu, L.-C. Ji, Y.-Q. Xie, T. Wang, and W.-Z. Shi, “Pulsed Laser Assisted Reduction of Graphene Oxide,” Carbon 49(7), 2431–2436 (2011).

    Article  CAS  Google Scholar 

  18. V. A. Smirnov, A. A. Arbuzov, Yu. M. Shul’ga, S. A. Baskakov, V. M. Martynenko, V. E. Muradyan, and E. I. Kresova, “Photoreduction of Graphite Oxide,” High Energy Chem. 45, 57–61 (2011).

    Article  CAS  Google Scholar 

  19. Y. M. Shulga, V. M. Martynenko, V. E. Muradyan, S. A. Baskakov, V. A. Smirnov, and G. L. Gutsev, “Gaseous Products of Thermo- and Photo-Reduction of Graphite Oxide,” Chem. Phys. Lett. 498(4–6), 287–291 (2010).

    Article  CAS  Google Scholar 

  20. V. A. Smirnov, Yu. M. Shul’ga, N. N. Denisov, E. I. Kresova, and N. Yu. Shul’ga, “Photoreduction of Graphite Oxide at Different Temperatures”, Nanotechnol. Russ. 7, 156–163 (2012).

    Article  Google Scholar 

  21. J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J. M. D. Tascón, “Graphene Oxide Dispersions in Organic Solvents,” Langmuir 24(19), 10560–10564 (2008).

    Article  CAS  Google Scholar 

  22. S. Moussa and G. Atkinson, M. SamyEl-Shall, A. Shehata, K. M. AbouZeidb, and M. B. Mohamed, “Laser Assisted Photocatalytic Reduction of Metal Ions by Graphene Oxide,” J. Mater. Chem. 21(26), 9608–9619 (2011).

    Article  CAS  Google Scholar 

  23. J. I. Paredes, S. Villar-Rodil, P. Solis-Fernández, A. Martinez-Alonso, and J. M. D. Tascón, “Atomic Force and Scanning Tunneling Microscopy Imaging of Graphene Nanosheets Derived from Graphite Oxide,” Langmuir 25(10), 5957–5968 (2009).

    Article  CAS  Google Scholar 

  24. Y. Matsumoto, M. Koinuma, S. Y. Kim, Y. Watanabe, T. Taniguchi, K. Hatakeyama, H. Tateishi, and S. Ida, “Simple Photoreduction of Graphene Oxide Nanosheet under Mild Conditions,” ACS Appl. Mater. Interfases 2(12), 3461–3466 (2010).

    Article  CAS  Google Scholar 

  25. S. Stankovich, R. D. Piner, X. Chen, N. Wu, S.-B. T. Nguyen, and R. S. Ruoff, “Stable Aqueous Dispersions of Graphitic Nanoplatelets via the Reduction of Exfoliated Graphite Oxide in the Presence of Poly(sodium) 4-styrenesulfonate,” J. Mater. Chem. 16(2), 155–158 (2006).

    Article  CAS  Google Scholar 

  26. T. Szabó, O. Berkesi, P. Forgó, K. Josepovits, Y. Sanakis, D. Petridis, and I. Dékány, “Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides,” Chem. Mater. 18(11), 2740–2749 (2006).

    Article  Google Scholar 

  27. H. K. Jeong, M. H. Jin, K. P. So, S. C. Lim, and Y. H. Lee, “Tailoring the Characteristics of Graphite Oxides by Different Oxidation Times,” J. Phys. D: Appl. Phys. 42(6), 065418(6) (2009).

    Article  Google Scholar 

  28. D. W. Lee, V. L. De Los Santos, W. Seo, F. L. Leon, D. A. Bustamante, J. M. Cole, and C. H. W. Barnes, “The Structure of Graphite Oxide: Investigation of Its Surface Chemical Groups,” J. Phys. Chem. B 114(17), 5723–5728 (2010).

    Article  CAS  Google Scholar 

  29. N. S. Bayliss and E. G. McRae, “Solvent Effects in the Spectra of Acetone, Crotonaldehyde, Nitromethane and Nitrobenzene,” J. Phys. Chem 58(11), 1006–1011 (1954).

    Article  CAS  Google Scholar 

  30. J. Calvert and J. Pitts, Jr., Photochemistry (Wiley, New York, 1967; Mir, Moscow, 1968), p. 671.

    Google Scholar 

  31. Organic Electronic Spectral Data, Ed. by M. J. Kamlet (Intersci. Publ., New York-London, 1960), Vol. 1.

    Google Scholar 

  32. Organic Electronic Spectral Data, Ed. by H. E. Unganade (Intersci. Publ., New York-London, 1960), Vol. 2.

    Google Scholar 

  33. Organic Electronic Spectral Data, Ed. by O. H. Wheler and L. A. Kaplan (Intersci. Publ., New York-London, 1966), Vol. 3.

    Google Scholar 

  34. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The Chemistry of Graphene Oxide,” Chem. Soc. Rev. 39(10), 228–240 (2010).

    Article  CAS  Google Scholar 

  35. G. N. Lewis and M. Calvin, “The Color of Organic Substances,” Chem. Rev. 25(2), 273–328 (1939).

    Article  CAS  Google Scholar 

  36. M. J. Dewar, “Colour and Constitution Part III. Polyphenyls, Polyenes, and Phenylpolyenes, and the Signification of Cross-Conjugstion,” J. Chem. Soc., 3544–35550 (1952).

  37. I. A. Misurkin and A. A. Ovchinnikov, “The Electronic Structures and Properties of Polimeric Molecules with Conjugated Bonds,” Russ. Chem. Rev. 46, 1835–1870 (1977), Chem. Rev. Russian, 4, 6, 967.

    Article  CAS  Google Scholar 

  38. M. Tsuji, S. Huzinaga, and T. Hasino, “Bond Alternation in Long Polyenes,” Rev. Mod. Phys. 32(2), 425–427 (1960).

    Article  CAS  Google Scholar 

  39. J. A. Barltrop and J. D. Coyle, Excited States in Organic Chemistry (Wiley, New York, London, 1975; Mir, Moscow, 1978).

    Google Scholar 

  40. D. Bloor, F. H. Preston, and D. J. Ando, “Optical Properties of Fully and Partially Polymerized Bis(p-Toluene Sulphonate) Diacetylene Crystals,” Chem. Phys. Lett. 38(1), 33–36 (1976).

    Article  CAS  Google Scholar 

  41. E. Clar, Polycyclic Hydrocarbons (Acad. Press, London-New York, 1964; Khimiya, Moscow, 1971), Vol. 1.

    Google Scholar 

  42. R. Pariser, “Theory of the Electronic Spectra and Structure of the Polyacenes and of Altemant Hydrocarbons,” J. Chem. Phys. 24(2), 250–268 (1956).

    Article  CAS  Google Scholar 

  43. J. Robertson and E. P. O’Reilly, “Electronic and Atomic Structure of Amorphous Carbon,” Phys. Rev. B 35(6), 2946–2957 (1987).

    Article  CAS  Google Scholar 

  44. F. Demichelis, S. Schreiter, and A. Tagliaferro, “Photoluminescence in a-C:H Films,” Phys. Rev. B 51(4), 2143–2147 (1995).

    Article  CAS  Google Scholar 

  45. C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Granfunkel, and M. Chhovalla, “Evolution of Electrical, Chemical, and Structural Properties of Transparent and Conducting Chemically Derived Graphene Thin Films,” Adv. Funct.l Mater. 19(6), 2577–2583 (2009).

    Article  CAS  Google Scholar 

  46. J. L. Brédas, and G. B. Street, “Electronic Properties of Amorphous Carbon Films,” J. Phys. C: Solid State Phys. 18(21), L651–L655 (1985).

    Article  Google Scholar 

  47. V. G. Plotnikov, V. A. Smirnov, M. V. Alfimov, and Yu.M. Shul’ga, “The Graphite Oxide Photoreduction Mechanism,” High Energy Chem. 45, 411–415 (2011).

    Article  CAS  Google Scholar 

  48. V. G. Plotnikov, V. A. Smirnov, and M. V. Alfimov, “Photophysical Processes and the Photodissociation of Chemical Bonds in Polyatomic Molecules” High Energy Chem. 41, 131 (2007).

    Article  CAS  Google Scholar 

  49. M. Ya. Melnikov and V. A. Smirnov, Handbook of Photochemistry of Organic Radicals (Begell House, New York-Wallingford (UK), 1996).

    Google Scholar 

  50. Y. Liang, J. Frisch, L. Zhi, H. Norouzi-Arasi, X. Feng, J. P. Rabe, N. Koch, and K. Müllen, “Transparent, Highly Conductive Grapheme Electrodes from Acetylene-Assisted Thermolysis of Graphite Oxide Sheets and Nanographene Molecules,” Nanotechnology 20(43), 434007(6) (2009).

    Article  Google Scholar 

  51. C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, and L. Niu, “Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene,” Anal. Chem. 81(6), 2378–2382 (2009).

    Article  CAS  Google Scholar 

  52. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97(18), 187401(4) (2006).

    Article  Google Scholar 

  53. G. Eda, G. Fanchini, and M. Chhowalla, “Large-Area Ultrathin Films of Reduced Graphene Oxide as a Transparent and Flexible Electronic Material,” Nature Nanotechnol. 3(5), 270–274 (2008).

    Article  CAS  Google Scholar 

  54. Y. Si and E. T. Samulski, “Synthesis of Water Soluble Graphene,” Nano Lett. 8(6), 1679–1682 (2008).

    Article  CAS  Google Scholar 

  55. H.-K. Jeong, Y. P. Lee, M. H. Jin, E. S. Kim, J. J. Bae, and Y. H. Lee, “Thermal Stability of Graphite Oxide,” Chem. Phys. Lett. 470(4–6), 255–258 (2009).

    Article  CAS  Google Scholar 

  56. T. Nakajima, A. Mabuchi, and R. Hagiwara, “A New Structure Model of Graphite Oxide,” Carbon 26(3), 357–361 (1988).

    Article  CAS  Google Scholar 

  57. M. Mermoux, Y. Chabre, and A. Rousseau, “FTIR and 13C NMR Study of Graphite Oxide,” Carbon 29(3), 469–474 (1991).

    Article  CAS  Google Scholar 

  58. T. Nakajima and Y. Matsuo, “Formation Process and Structure of Graphite Oxide,” Carbon 32(3), 469–475 (1994).

    Article  CAS  Google Scholar 

  59. C. Hontoria-Lucas, A. J. López-Peinado, J. de D. López-González, M. L. Rojas-Cervantes, and R. M. Martín-Aranda, “Study of Oxygen-Containing Groups in a Series of Graphite Oxide. Physical and Chemical Characterization,” Carbon 33(11), 1585–1592 (1995).

    Article  CAS  Google Scholar 

  60. T. Szabó, O. Berkesi, and I. Dékány, “DRIFT Study of Deuterium-Exchanged Graphite Oxide,” Carbon 43(15), 3186–3189 (2005).

    Article  Google Scholar 

  61. G. I. Titelman, V. Gelman, S. Bron, R. L. Khalfin, Y. Cohen, and H. Bianco-Peled, “Characteristics and Microstructure of Aqueous Colloidal Dispersions of Graphite Oxide,” Carbon 43(3), 641–649 (2005).

    Article  CAS  Google Scholar 

  62. T. Szabó, E. Tombacz, E. Illes, and I. Dékány, “Enhanced Acidity and pH-Dependent Surface Charge Characterization of Successivety Oxidized Graphite Oxides,” Carbon 44(3), 537–545 (2006).

    Article  Google Scholar 

  63. S. Stankovich, R. D. Piner, S.-B. T. Nguyen, and R. S. Ruoff, “Synthesis and Exfoliation of Isocyanate-Treated Graphene Oxide Nanoplatelets,” Carbon 44(15), 3342–3347 (2006).

    Article  CAS  Google Scholar 

  64. M. J. McAllister, J.-L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud’homme, and I. A. Aksay, “Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite,” Chem. Mater. 19(18), 4396–4404 (2007).

    Article  CAS  Google Scholar 

  65. D. Wei, J.-F. Truchon, S. Sirois, and D. Salahub, “Solvation of Formic Acid and Proton Transfer in Hydrated Clusters,” J. Chem. Phys. 116(14), 6028–6038 (2002).

    Article  CAS  Google Scholar 

  66. E. E. Fileti and R. Rivelino, “Rayleigh Light Scattering of Hydrogen Bonded Clusters Investigated by Means of ab initio Calculations,” J. Phys. B: Atom. Molec. Opt. Phys. 36(2), 399–408 (2003).

    Article  CAS  Google Scholar 

  67. F. Weigert, “über die spezifische Wirkung der polarisierten Straahlung,” Ann. Phys. 368(24), 681–725 (1920).

    Article  Google Scholar 

  68. J. D. Coyle, “Photochemistry of Carboxylic Acid Derivatives,” Chem. Rev. 78(2), 97–123 (1978).

    Article  CAS  Google Scholar 

  69. P. Filipiak, G. L. Hug, and B. Marciniak, “Photochemistry of Carboxylic Acids Containing the Phenyl and Thioether Groups: Steady-State and Laser Flash Photolysis Studies,” J. Photochem. Photobiol. A Chem. 177(2–3), 295–306 (2006).

    Article  CAS  Google Scholar 

  70. J.-L. Li, K. N. Kudin, M. J. McAllister, R. K. Prud’homme, I. A. Aksay, and R. Car, “Oxygen-Driven Unzipping of Graphitic Materials,” Phys. Rev. Lett. 96(17), 176101(4) (2006).

    Article  Google Scholar 

  71. W. Gao, L. B. Alemany, L. Ci, and P. M. Ajayan, “New Insights into the Structure and Reduction of Graphite Oxide,” Nature Chem. 1(5), 403–408 (2009).

    Article  CAS  Google Scholar 

  72. V. G. Plotnikov and A. A. Ovchinnikov, “The Photochemical and Radiation-Chemical Stability of Molecules. Unimolecular Reactions Involving the Abstraction of a Hydrogen Atom,” Russ. Chem. Rev. 47 247–264 (1978).

    Article  Google Scholar 

  73. C.-L. Huang, J.-C. Jiang, S. H. Lin, Y. T. Lee, and C.-K. Ni, “Photodissociation of Ethylbenzene at 248 nm,” J. Chem. Phys. 116(18), 7779–7783 (2002).

    Article  CAS  Google Scholar 

  74. Energy of Chemical Bond Breakage. Ionization Potentials and Affinity to Electron. Handbook, Ed. by V. N. Kondrat’ev (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  75. V. B. Nazarov, V. A. Smirnov, and M. V. Alfimov, “Photolysis for Solid Solutions. High Exited Triplet Molecules of 1,2-Diphenylethane Decay onto Molecular Hydrogen and Stilbene,” Dokl. Akad. Nauk SSSR 227(4), 908–910 (1976).

    CAS  Google Scholar 

  76. L. Zhu and T. J. Cronin, “Photodissociation of Benzaldehyde in the 280–308 nm Region,” Chem. Phys. Lett. 317(3–5), 227–231 (2000).

    Article  CAS  Google Scholar 

  77. L.-L. Chua, S. Wang, P.-J. Chia, L. Chen, L.-H. Zhao, W. Chen, A. T.-S. Wee, and P. K.-H. Ho, “Deoxidation of Graphene Oxide Nanosheets to Extended Graphenites by “Unzipping” Elimination,” J. Chem. Phys. 129(11), 114702(6) (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Smirnov.

Additional information

Original Russian Text © V.A. Smirnov, N.N. Denisov, M.V. Alfimov, 2013, published in Rossiiskie Nanotekhnologii, 2013, Vol. 8, Nos. 1–2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smirnov, V.A., Denisov, N.N. & Alfimov, M.V. Photochemical reduction of graphite oxide. Nanotechnol Russia 8, 1–22 (2013). https://doi.org/10.1134/S1995078013010151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078013010151

Keywords

Navigation