Skip to main content
Log in

Aggregation effects in solutions of model oligopeptides and other amphiphilic polymers

  • Published:
Polymer Science Series C Aims and scope Submit manuscript

Abstract

The problems of the aggregation behavior of amphiphilic macromolecules in solution are discussed. The cases of electrically neutral and polyelectrolyte chains are examined. The effect of chain parameters, interaction parameters, and external factors—temperature, solvent quality, medium pH, and solution ionic strength—on the structure and stability of the aggregates is analyzed. As examples, two systems are selected: (i) a solution of model oligopeptides with different chain architectures that contain hydrophobic alanine and negatively charged polar aspartic acid and (ii) a solution of HP copolymers in which hydrophobic (H) groups are located in the backbone and polar (P) side groups have a rigid bond to the backbone. The micelles formed by the oligopeptides are thermodynamically stabilized after the addition of a univalent salt; in addition, the effect heavily depends on the pH of a medium and the size of the added cations. For the second system, the regions of stability of aggregates of different geometries are determined and the corresponding phase diagram is constructed as a function of the surface tension and bending modulus of the surface of the aggregate. The problems related to the kinetics of coalescence of the aggregates are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.-G. De Gennes, Scaling Concepts in Polymer Physics (Cornell Univ. Press, Ithaca, 1979; Mir, Moscow, 1982).

    Google Scholar 

  2. I. M. Lifshitz, A. Yu. Grosberg, and A. R. Khokhlov, Rev. Mod. Phys. 50, 1280 (1978).

    Article  Google Scholar 

  3. A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  4. I. W. Hamley, The Physics of Block Copolymers (Oxford Univ. Press, Oxford, 1998).

    Google Scholar 

  5. A. R. Khokhlov and P. G. Khalatur, Physica A (Amsterdam) 249, 253 (1998).

    Article  CAS  Google Scholar 

  6. V. V. Vasilevskaya, P. G. Khalatur, and A. R. Khokhlov, Macromolecules 36, 10103 (2003).

    Article  CAS  Google Scholar 

  7. A. N. Semenov, Macromolecules 37, 226 (2004).

    Article  CAS  Google Scholar 

  8. A. V. Subbotin and A. N. Semenov, Polymer Science, Ser. A 49, 1328 (2007) [Vysokomol. Soedin., Ser. A 49, 2139 (2007)].

    Article  Google Scholar 

  9. V. V. Vasilevskaya and V. A. Ermilov, Polymer Science, Ser. A 53, 846 (2011) [Vysokomol. Soedin., Ser. A 53, 1603 (2011)].

    Article  CAS  Google Scholar 

  10. A. R. Khokhlov and P. G. Khalatur, Phys. Rev. Lett. 82, 3456 (1999).

    Article  CAS  Google Scholar 

  11. E. N. Govorun, V. A. Ivanov, A. R. Khokhlov, et al., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 64, R40903 (2001).

    Article  Google Scholar 

  12. E. N. Govorun, A. R. Khokhlov, and A. N. Semenov, Eur. Phys. E 12, 255 (2003).

    Article  CAS  Google Scholar 

  13. Y. Kriksin, P. G. Khalatur, and A. R. Khokhlov, Macromol. Symp. 201, 29 (2003).

    Article  CAS  Google Scholar 

  14. L. F. Zhang and A. Eisenberg, Science (Washington, D. C.) 268, 1728 (1995).

    Article  CAS  Google Scholar 

  15. K. Yu and A. Eisenberg, Macromolecules 29, 6359 (1996).

    Article  CAS  Google Scholar 

  16. K. Yu, L. Zhang, and A. Eisenberg, Langmuir 12, 5980 (1996).

    Article  CAS  Google Scholar 

  17. K. Yu and A. Eisenberg, Macromolecules 31, 3509 (1998).

    Article  CAS  Google Scholar 

  18. K. Yu, C. Bartels, and A. Eisenberg, Langmuir 15, 7157 (1999).

    Article  CAS  Google Scholar 

  19. H. W. Shen, L. F. Zhang, and A. Eisenberg, J. Am. Chem. Soc. 121, 2728 (1999).

    Article  CAS  Google Scholar 

  20. O. V. Borisov and E. B. Zhulina, Macromolecules 38, 2506 (2005).

    Article  CAS  Google Scholar 

  21. E. B. Zhulina, M. Adam, I. LaRue, S. S. Sheiko, and M. Rubinstein, Macromolecules 38, 5330 (2005).

    Article  CAS  Google Scholar 

  22. O. V. Borisov, E. B. Zhulina, F. A. M. Leermakers, and A. H. E. Muller, Adv. Polym. Sci. 241, 57 (2011).

    Article  CAS  Google Scholar 

  23. I. K. Nyrkova and A. N. Semenov, Faraday Discuss. 128, 113 (2005).

    Article  CAS  Google Scholar 

  24. V. V. Vasilevskaya, A. A. Klochkov, A. A. Lazutin, P. G. Khalatur, and A. R. Khokhlov, Macromolecules 37, 5444 (2004).

    Article  CAS  Google Scholar 

  25. V. V. Vasilevskaya, V. A. Markov, G. Brinke, and A. R. Khokhlov, Macromolecules 41, 7722 (2008).

    Article  CAS  Google Scholar 

  26. S. S. Abramchuk, A. N. Semenov, and A. R. Khokhlov, Macromol. Theory Simul. 13, 64 (2004).

    Article  CAS  Google Scholar 

  27. A. R. Khokhlov, A. N. Semenov, and A. V. Subbotin, Eur. Phys. J. E 17, 283 (2005).

    Article  CAS  Google Scholar 

  28. E. Jarkova, A. Johner, E. A. Maresov, and A. N. Semenov, Eur. Phys. J. E 21, 371 (2006).

    Article  CAS  Google Scholar 

  29. A. S. Ushakova, E. N. Govorun, and A. R. Khokhlov, J. Phys.: Condens. Matter 18, 915 (2006).

    Article  CAS  Google Scholar 

  30. A. N. Semenov and A. V. Subbotin, Macromolecules 43, 3487 (2010).

    Article  CAS  Google Scholar 

  31. E. A. Maresov and A. N. Semenov, Macromolecules 41, 9439 (2008).

    Article  CAS  Google Scholar 

  32. S. Premilat and J. Hermans, J. Chem. Phys. 59, 2602 (1973).

    Article  CAS  Google Scholar 

  33. W. Z. Helfrich, Z. Naturforsch. C 28, 693 (1973).

    CAS  Google Scholar 

  34. R. Lipowsky, Nature (London) 349, 475 (1991).

    Article  CAS  Google Scholar 

  35. L. D. Landau and E. M. Lifshitz, The Theory of Elasticity (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  36. U. Seifert, Adv. Phys. 46, 13 (1997).

    Article  CAS  Google Scholar 

  37. B. V. Derjaguin, N. V. Churaev, and V. M. Muller, Surface Forces (Nauka, Moscow, 1985; Consultants Bureau, New York, 1987).

    Google Scholar 

  38. O. Z. Stern, Electrochem. 30, 508 (1924).

    CAS  Google Scholar 

  39. D. M. Anderson, H. T. Davis, J. C. C. Nitsche, and L. E. Scriven, Adv. Chem. Phys. 77, 337 (1990).

    Article  CAS  Google Scholar 

  40. K. J. Grosse-Brauckmann, Colloid Interface Sci. 187, 418 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Subbotin.

Additional information

Original Russian Text © A.V. Subbotin, A.N. Semenov, 2012, published in Vysokomolekulyarnye Soedineniya, Ser. C, 2012, Vol. 54, No. 7, pp. 1000–1012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subbotin, A.V., Semenov, A.N. Aggregation effects in solutions of model oligopeptides and other amphiphilic polymers. Polym. Sci. Ser. C 54, 36–47 (2012). https://doi.org/10.1134/S1811238212030010

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1811238212030010

Keywords

Navigation