Skip to main content
Log in

An extended Hamilton — Jacobi method

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We develop a new method for solving Hamilton’s canonical differential equations. The method is based on the search for invariant vortex manifolds of special type. In the case of Lagrangian (potential) manifolds, we arrive at the classical Hamilton — Jacobi method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kozlov, V.V., General Theory of Vortices, Izhevsk: Izdatel’skij Dom “Udmurtskij Universitet”, 1998 [Encyclopaedia Math. Sci., vol. 67, Berlin: Springer, 2003].

    Google Scholar 

  2. Whittaker, E. T., A Treatise on the Analytical Dynamics of Particles and Rigid Bodies; with an Introduction to the Problem of Three Bodies, 3rd ed., Cambridge: Cambridge Univ. Press, 1927.

    MATH  Google Scholar 

  3. Birkhoff, G.D., Dynamical Systems: With an Addendum by J. Moser, rev. ed., American Mathematical Society Colloquium Publications, vol. 9, Providence,R.I.: AMS, 1966.

    Google Scholar 

  4. Santilli, R. M., Foundations of Theoretical Mechanics: 2. Birkhoffian Generalization of Hamiltonian Mechanics, Texts Monogr. Phys., New York: Springer, 1983.

    Google Scholar 

  5. Kozlov, V.V., On invariant Manifolds of Hamilton’s Equations, Prikl. Mat. Mekh., 2012, vol. 76, no. 4, pp. 526–539 [J. Appl. Math. Mech., in press].

    Google Scholar 

  6. Cartan, É., Leçoons sur les invariants intégraux, Paris: Hermann, 1922.

    Google Scholar 

  7. Arnold, V. I., Kozlov, V.V., and Nełshtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia Math. Sci., vol. 3, Berlin: Springer, 1993, pp. 1–291.

    Book  Google Scholar 

  8. Nekhoroshev, N.N., Action-Angle Variables and Their Generalization, Tr. Mosk. Mat. Obs., 1972, vol. 26, pp. 181–198 [Trans. Moscow Math. Soc., 1972, vol. 26, pp. 180–198].

    MATH  Google Scholar 

  9. Stekloff, W., Sur une généralisation d’un théoreme de Jacobi, C. R. Acad. Sci. Paris, 1909, vol. 148, pp. 153–155.

    MATH  Google Scholar 

  10. Stekloff, W., Application d’un théorème généralisé de Jacobi au problème de S. Lie-Mayer, C. R. Acad. Sci. Paris, 1909, vol. 148, pp. 277–279.

    MATH  Google Scholar 

  11. Stekloff, W., Application du théorème généralisé de Jacobi au problème de Jacobi-Lie, C. R. Acad. Sci. Paris, 1909, vol. 148, pp. 465–468.

    MATH  Google Scholar 

  12. Steklov, V.A., Works on Mechanics of 1902–1909,Translated from French into Russian. Moscow-Izhevsk: R&C Dynamics, 2011.

    Google Scholar 

  13. Mishchenko, A. S. and Fomenko, A. T., Generalized Liouville Method of Integration of Hamiltonian Systems, Funktsional. Anal. i Prilozhen., 1978, vol. 12, no 2, pp. 46–56 [Funct. Anal. Appl., 1978, vol. 12, no. 2, pp. 113–121].

    Article  MATH  Google Scholar 

  14. Lie, S., Theorie der Transformationsgruppen II, Leipzig: Teubner, 1890.

    Google Scholar 

  15. Brailov, A. V., Complete Integrability of Some Geodesic Flows and Integrable Systems with Noncommuting Integrals, Dokl. Akad. Nauk SSSR, 1983, vol. 271, no. 2, pp. 273–276 (Russian).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery V. Kozlov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozlov, V.V. An extended Hamilton — Jacobi method. Regul. Chaot. Dyn. 17, 580–596 (2012). https://doi.org/10.1134/S1560354712060093

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354712060093

MSC2010 numbers

Keywords

Navigation