Skip to main content
Log in

Anthropogenic evolution of animals: Facts and their interpretation

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

Problems concerning microevolutionary transformations in animal populations are considered. It is shown that genetic variation is the main factor providing the basis for adaptation to environmental changes, including toxic pollution. The selection pressure of a toxic factor gives an advantage in survival to more resistant genotypes in animal populations, which eventually leads to the reduction of their genetic diversity and potential for adaptation to other natural or anthropogenic stress factors. Microevolutionary transformations follow the pattern of r-selection, i.e., occur in favor of smaller, earlier maturing individuals capable of expending a greater proportion of their energy resources for reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altukhov, Yu.P., Geneticheskie protsessy v populyatsiyakh (Genetic Processes in Populations), Moscow: Akademkniga, 2003.

    Google Scholar 

  • Bezel’, V.S., Populyatsionnaya ekotoksikologiya mlekopitayushchikh (Population Ecotoxicology of Mammals), Moscow: Nauka, 1987.

    Google Scholar 

  • Bezel’, V.S., Ekologicheskaya toksikologiya: populyarnyi i biotsenoticheskii aspekty (Ecological Toxicology: Population and Biocenotic Aspects), Vorobeichik, E.L., Ed., Yekaterinburg: Goshchitskii, 2006.

    Google Scholar 

  • Bezel’, V.S., Bol’shakov, V.N., and Vorobeichik, E.L., Populyatsionnaya ekotoksikologiya (Population Ecotoxicology), Moscow: Nauka, 1994.

    Google Scholar 

  • Bickham, J.W., Sandhu, S., Heber, P.D.N., et al., Effect of Chemical Contaminants on Genetic Diversity in Natural Population: Implication for Biomonitoring and Ecotoxicology, Mutat. Res., 2000, vol. 463, pp. 33–51.

    Article  PubMed  CAS  Google Scholar 

  • Bol’shakov, V.N., Dobrinskii, L.N., Kubantsev, B.S., et al., Razvitie idei akademika S.S. Shvartsa v sovremennoi ekologii (Development of Academician S.S. Shvarts’ Ideas in Modern Ecology), Moscow: Nauka, 1991.

    Google Scholar 

  • Braginskii, L.P., Komarovskii, F.Ya., and Merezhko, F.I., Persistentnye pestitsidy v ekologii presnykh vod (Persistent Pesticides in Freshwater Ecology), Kiev: Naukova Dumka, 1971.

    Google Scholar 

  • Cajaraville, M.P., Houser, L., Carvalho, G., et al., Genetic Damage and the Molecular/Cellular Response to Pollution, in Effects of Pollution on Fish, Lawrence, A.J. and Hemingway, K.L., Eds., New York: Blackwell, 2003, pp. 14–82.

    Chapter  Google Scholar 

  • Chesser, R.K. and Sugg, D.W., Toxicant As Selective Agents in Population and Community Dynamics, in Ecotoxicology: A Hierarchical Treatment, Newman, M.C. and Jagoe, Ch.H., Eds., New York: Lewis Publ. Ltd., 1996, pp. 293–317.

    Google Scholar 

  • Cuvin-Aralar, M.L.A. and Aralar, E.V., Resistance to Heavy-Metals Mixture in Oreochromis niloticus Progenies from Parents Chronically Exposed to the Same Metals, Chemosphere, 1995, vol. 30, pp. 953–963.

    Article  CAS  Google Scholar 

  • Depledge, M.N., Genetic Ecotoxicology: An Overview. J. Exp. Mar. Biol. Ecol., 1996, vol. 200, pp. 57–66.

    Article  CAS  Google Scholar 

  • Dobzhansky, Th., Genetics and Evolutionary Process, New York: Columbia Univ. Press, 1970.

    Google Scholar 

  • Gilyarov, A.M., Formation of Evolutionary Approach As the Explanatory Basis in Ecology, Zh. Obshch. Biol., 2003, vol. 64, no. 1, pp. 3–22.

    Google Scholar 

  • Glotov, N.V. and Tarakanov, V.V., Genotype Reaction Norm and Genotype-Environment Interaction in a Natural Population, Zh. Obshch. Biol., 1985, vol. 56, no. 6, pp. 95–100.

    Google Scholar 

  • Hauser, L., Hemingway, K.L., Wedderbern, J., and Lawrence, A.J., Molecular/Cellular Processes and Population Genetics of Species: Molecular Effect and Population Response, in Effects of Pollution on Fish, Lawrence, A.J. and Hemingway, K.L., Eds., New York: Blackwell, 2003, pp. 256–288.

    Chapter  Google Scholar 

  • Heithaus, M. R. and Laushman, R.H., Genetic Variation and Conservation of Stream Fish: Influence of Ecology, Life History, and Water Quality, Can. J. Fish. Aquat. Sci., 1997, vol. 54, no. 8, pp. 1822–1836.

    Article  Google Scholar 

  • Izyumov, Yu.G., Kas’yanov, A.N., Talikina, M.G., et al., Variability of Vertebra Number and Anomalies of Axial Skeleton in Experimental Fingerlings of Roach, Rutilus rutilus (L.), after Exposure of Parent Spermii to Toxicants, Vopr. Ikhtiol., 2002, vol. 42, no. 1, pp. 109–113.

    Google Scholar 

  • Izyumov, Yu.G., Talikina, M.G., and Chebotareva, Yu.V., Micronuclei Numbers in Peripheral Erythrocytes of Roach, Rutilus rutilus (L.), and Bream, Abramis brama (L.), from the Rybinsk and Gorkii Reservoirs, Biol. Vnutr. Vod, 2003, no. 1, pp. 98–101.

  • Jerneloev, A., Physiological Mechanism for Acid Tolerance in Fish, Stockholm: Swed. Environ. Res. Inst., 1988.

    Google Scholar 

  • Klerks, P.L., Adaptation to Metals in Animals, in Heavy Metals Tolerance: Evolutionary Aspects, Show, A.J., Ed., Boca Raton: CRC, 1990, pp. 311–321.

    Google Scholar 

  • Kolchinskii, E.I., Evolyutsiya biosfery (Evolution of the Biosphere), Leningrad: Nauka, 1990.

    Google Scholar 

  • Korosov, A.V. and Pavlov, B.K., Changes in the Genotypic Population Structure upon Long-Term Exposure to Anthropogenic Impact, in Dolgosrochnoe prognozirovanie sostoyaniya ekosistem (Long-Term Prognosis of Ecosystem State), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 1988, pp. 187–210.

    Google Scholar 

  • Malvey, M. and Diamond, S.A., Genetic Factors and Tolerance Acquisition in Population Exposed to Metals and Metalloids, in Metal Ecotoxicology, Newman, M.C. and McIntosh, A.W., Eds., New York: Lewis Publ. Ltd., 1996, pp. 301–321.

    Google Scholar 

  • McHeily, T., Evolution in Closely Adjacent Plant Populations: 3. Agrestis tenuis on a Small Mine, Heredity, 1968, vol. 23, pp. 99–108.

    Article  Google Scholar 

  • Moiseenko, T.I., Change in the Life Cycle Strategy of Fish under the Effect of Chronic Water Pollution in the Subarctic, Ekologiya, 2002, no. 1, pp. 50–60.

  • Moiseenko, T.I., Kudryavtseva, L.P., and Gashkina, N.A., Rasseyannye elementy v poverkhnostnykh vodakh sushi: tekhnofil’nost’, bioakkumulyatsiya i ekotoksikologiya (Trace Elements in Continental Surface Waters: Technophily, Accumulation, and Ecotoxicology), Moscow: Nauka, 2006.

    Google Scholar 

  • Moore, M.N. and Willson, R.I., A Model for Cellular Uptake and Intercellular Behaviour of Particulate-Bound Micropollutants, Mar. Environ. Res., 1998, vol. 46, pp. 509–514.

    Article  CAS  Google Scholar 

  • Munkittrick, K.R. and Dixon, D.G., A Holistic Approach to Ecosystem Health Assessment Using Fish Population Characteristics, Hydrobiologia, 1989, vols. 188/189, pp. 123–135.

    Google Scholar 

  • Nekrasova, L.S., Connection between Mortality of Bloodsucking Insects in Chlorofos and Their Biological Heterogeneity, Ekologiya, 1989, no. 4, pp. 39–46.

  • Newman, M.C., Quantitative Methods in Aquatic Ecotoxicology, New York: Lewis Publishers Ltd., 1995.

    Google Scholar 

  • Pianka, E.R., Evolutionary Ecology, New York: Harper and Row, 1978. Translated under the title Evolyutsionnaya ekologiya, Moscow: Mir, 1981.

    Google Scholar 

  • Rowe, C.L., Growth Responses of an Estuarine Fish Exposed to Mixed Trace Elements in Sediments over a Full Life Cycle, Ecotoxicol. Environ. Safety, 2003, vol. 54, pp. 229–239.

    Article  PubMed  CAS  Google Scholar 

  • Shilova, S.A. and Shatunovskii, M.I., Ecophysiological Indicators of the State of Animal Populations Exposed to Damaging Factors, Ekologiya, 2005, no. 1, pp. 1–7.

  • Shugart, L.R. and Theodorakis, C.W., Environment Gonadotoxicity: Probing the Underlying Mechanism, Environ. Health Persp., 1994, vol. 102, pp. 13–18.

    Google Scholar 

  • Shvarts, S.S., Ekologicheskie zakonomernosti evolyutsii (Ecological Patterns of Evolution), Moscow: Nauka, 1980.

    Google Scholar 

  • Staton, J.L., Schizas, N.V., Chandler, D.C., et al., Ecotoxicology and Population Genetic Structure: The Emergence of “Philogeographic and Evolutionary Ecotoxicology,” Ecotoxicology, 2001, vol. 6, pp. 217–222.

    Article  Google Scholar 

  • Walker, C.H., Hopkin, S.P., Sibly, R.M., and Peakall, D.B., Principles of Ecotoxicology, London: Taylor and Francis, 2001.

    Google Scholar 

  • Wies, J.S., Mugue, N., and Wies, P., Mercury Tolerance, Population Effects, and Population Genetic in the Mummichog Fundulus heteroclitus, in Genetics and Ecotoxicology, Forbes, V.E., Ed., London: Taylor and Francis Ltd., pp. 31–54, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Bol’shakov.

Additional information

Original Russian Text © V.N. Bol’shakov, T.I. Moiseenko, 2009, published in Ekologiya, 2009, No. 5, pp. 323–332.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bol’shakov, V.N., Moiseenko, T.I. Anthropogenic evolution of animals: Facts and their interpretation. Russ J Ecol 40, 305–313 (2009). https://doi.org/10.1134/S1067413609050014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413609050014

Key words

Navigation