Skip to main content
Log in

Magnetic and electrical properties of weakly doped manganese-deficient La1 − x Ca x Mn1 − z O3 manganites

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Samples of La1 − x Ca x Mn1 − z O3 + δ (x = 0.05−0.15) with deficient manganese and excess oxygen δ do not pass into a metallic state and have low spin ordering temperatures T C at acceptor Mn4+ concentrations near the percolation threshold. These results are explained by carrier localization in clusters near cation vacancies. A break in the carrier transport chain Mn-O-Mn in the form of absent manganese favors cluster formation and decreases the double exchange energy and T C of the samples. Closeness to the percolation threshold results in strong (more than four orders of magnitude) changes in the electrical resistivity in a magnetic field. The changes in the cluster sizes with the temperature and the magnetic field that are determined from the magnetotransport properties are satisfactorily described in the model of phase separation into small-radius metallic droplets in a dielectric paramagnetic and an antiferromagnetic matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. L. Nagaev, Phys.—Usp. 39(8), 781 (1996); E. L. Nagaev, JETP Lett. 6 (1), 18 (1967).

    Article  ADS  Google Scholar 

  2. A. Moreo, S. Yunoki, and E. Dagotto, Science (Washington) 283, 2034 (1999).

    Article  Google Scholar 

  3. E. Dagotto, New J. Phys. 7, 67 (2005).

    Article  ADS  Google Scholar 

  4. Y. Tokura, Rep. Prog. Phys. 69, 797 (2006).

    Article  ADS  Google Scholar 

  5. J. Burgy, M. Mayr, V. Martin-Mayor, A. Moreo, and E. Dagotto, Phys. Rev. Lett. 87, 277202 (2001).

    Article  ADS  Google Scholar 

  6. R. B. Griffiths, Phys. Rev. Lett. 23, 17 (1969).

    Article  ADS  Google Scholar 

  7. N. A. Babushkina, E. A. Chistotina, K. I. Kugel’, A. L. Rakhmanov, O. Yu. Gorbenko, and A. R. Kaul’, Phys. Solid State 45(3), 508 (2003); N. N. Loshkareva, E. V. Mostovshchikova, N. I. Solin, Yu. P. Sukhorukov, S. N. Tugushev, and S. V. Naumov, Europhys. Lett. 76, 933 (2006); N. I. Solin, JETP 101 (3), 535 (2005); C. He, M. A. Torija, J. Wu, J. W. Lynn, H. Zheng, J. F. Mitchell, and C. Leighton, Phys. Rev. B: Condens. Matter 76, 014401 (2007); J. M. De Teresa, M. R. Ibarra, P. A. Algarabel, C. Ritter, C. Marquina, J. Blasco, J. García, A. del Moral, and Z. Arnold, Nature (London) 386, 256 (1997); T. W. Eom, Y. H. Hyun, J. S. Park, Y. P. Lee, V. G. Prokhorov, V. S. Flis, and V. L. Svetchnikov, Appl. Phys. Lett. 94, 152502 (2009); J. Deisenhofer, D. Braak, H. A. Krug von Nidda, J. Hemberger, R. M. Eremina, V. A. Ivanshin, A.M.Balbashov, G. Jug, A. Loidl, T. Kimura, and Y. Tokura, Phys. Rev. Lett. 95, 257202 (2005).

    Article  ADS  Google Scholar 

  8. Pengcheng Dai, J. A. Fernandez Baca, N. Wakabayashi, E. W. Plummer, Y. Tomioka, and Y. Tokura, Phys. Rev. Lett. 85, 2553 (2000).

    Article  ADS  Google Scholar 

  9. J. Wu, J. W. Lynn, C. J. Glinka, J. Burley, H. Zheng, J. F. Mitchell, and C. Leighton, Phys. Rev. Lett. 94, 037201 (2005).

    Article  ADS  Google Scholar 

  10. H. Y. Hwang, S.-W. Cheong, P. G. Radaelli, M. Marezio, and B. Batlogg, Phys. Rev. Lett. 75, 914 (1995); J. M. De Teresa, M. R. Ibarra, J. García, J. Blasco, C. Ritter, P. A. Algarabel, C. Marquina, and A. del Moral, Phys. Rev. Lett. 76, 3392 (1996).

    Article  ADS  Google Scholar 

  11. L. M. Rodriguez-Martinez and J. P. Attfield, Phys. Rev. B: Condens. Matter 54, R15622 (1996); A. Maignan, C. Martin, G. Van Tendeloo, M. Hervieu, and B. Raveau, Phys. Rev. B: Condens. Matter 60, 15214 (1999).

    Article  ADS  Google Scholar 

  12. E. L. Nagaev, Phys. Lett. 218, 367 (1996).

    Article  Google Scholar 

  13. I. Kim, J. Dho, and S. Lee, Phys. Rev. B: Condens. Matter 62, 5674 (2000).

    Article  ADS  Google Scholar 

  14. H. L. Ju, J. Copalakrishnan, J. L. Peng, Qi Li, G. C. Xiong, T. Venkatesan, and R. L. Greene, Phys. Rev. B: Condens. Matter 51, 6143 (1995).

    Article  ADS  Google Scholar 

  15. Yu. M. Baikov, E. I. Nikulin, and Yu. P. Stepanov, Phys. Solid State 50(8), 1506 (2008).

    Article  ADS  Google Scholar 

  16. S. V. Trukhanov, N. V. Kasper, I. O. Troyanchuk, M. Tovar, H. Szymczak, and K. Bärner, J. Solid State Chem. 169, 85 (2002); S. V. Trukhanov, L. S. Lobanovski, M. V. Bushinsky, I. O. Troyanchuk, and H. Szymczak, J. Phys.: Condens. Matter 15, 1783 (2003).

    Article  ADS  Google Scholar 

  17. S. Hébert, B. Wang, A. Maignan, C. Martin, R. Retoux, and B. Raveau, Solid State Commun. 125, 295 (2003).

    Article  Google Scholar 

  18. A. K. Pramanik and A. Banerjee, Phys. Rev. B: Condens. Matter 81, 024431 (2010).

    Article  ADS  Google Scholar 

  19. R. Ganguly, M. Hervieu, A. Maignan, C. Martin, and B. Raveau, J. Phys.: Condens. Matter 14, 9039 (2002).

    Article  ADS  Google Scholar 

  20. H. F. Li, Y. Su, J. Persson, P. Meuffels, J. M. Walter, R. Skowronek, and Th. Brückel, J. Phys.: Condens. Matter 19, 016003 (2007).

    Article  ADS  Google Scholar 

  21. M. Yu. Kagan and K. I. Kugel’, Phys.—Usp. 44(6), 553 (2001).

    Article  ADS  Google Scholar 

  22. M. Yu. Kagan, A. V. Klaptsov, I. V. Brodsky, K. I. Kugel, A. O. Sboychakov, and A. L. Rakhmanov, J. Phys. A: Math. Gen. 36, 9155 (2003); A. L. Rakhmanov, K. I. Kugel, Ya. M. Blanter, and M. Yu. Kagan, Phys. Rev. B: Condens. Matter 63, 174424 (2001); A. O. Sboichakov, A. L. Rakhmanov, K. I. Kugel’, M. Yu. Kagan, and I. V. Brodsky, JETP 95 (4), 753 (2002); K. I. Kugel’, A. L. Rakhmanov, A. O. Sboichakov, M. Yu. Kagan, I. V. Brodsky, and A. V. Klaptsov, JETP 98 (3), 572 (2004).

    Article  ADS  MATH  Google Scholar 

  23. C. M. Varma, Phys. Rev. B: Condens. Matter 54, 7328 (1996).

    Article  ADS  Google Scholar 

  24. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Nauka, Moscow, 1979; Springer-Verlag, Heidelberg, Germany, 1984).

    Google Scholar 

  25. J. Zhang and B. I. Shklovskii, Phys. Rev. B: Condens. Matter 70, 115317 (2004).

    Article  ADS  Google Scholar 

  26. B. Dabrowski, X. R. Dybzinski, Z. Bukowski, O. Chmaissem, and J. D. Jorgensen, J. Solid State Chem. 146, 448 (1999).

    Article  ADS  Google Scholar 

  27. P. Schiffer, A. P. Ramirez, W. Bao, and S.-W. Cheong, Phys. Rev. Lett. 75, 3336 (1995).

    Article  ADS  Google Scholar 

  28. J. Alonso, E. Herrero, J. M. González-Calbet, M. Vallet-Regí, J. L. Martinez, J. M. Rojo, and A. Hernando, Phys. Rev. B: Condens. Matter 62, 11328 (2000).

    Article  ADS  Google Scholar 

  29. N. I. Solin, JETP Lett. 91(12), 675 (2010).

    Article  ADS  Google Scholar 

  30. N. I. Solin, JETP 114(1), 96 (2012).

    Article  ADS  Google Scholar 

  31. N. I. Solin, S. V. Naumov, T. I. Arbuzova, N. V. Kostromitina, M. V. Ivanchenko, A. A. Saranin, and N. M. Chebotaev, Phys. Solid State 50(10), 1908 (2008).

    Article  ADS  Google Scholar 

  32. C. Magen, P. A. Algarabel, L. Morellon, J. P. Araújo, C. Ritter, M. R. Ibarra, A. M. Pereira, and J. B. Sousa, Phys. Rev. Lett. 96, 167201 (2006).

    Article  ADS  Google Scholar 

  33. L. Ghivelder, I. Abrego Castillo, M. A. Gusmao, J. A. Alonso, and L. F. Cohen, Phys. Rev. B: Condens. Matter 60, 12184 (1999).

    Article  ADS  Google Scholar 

  34. D. N. H. Nam, K. Jonason, P. Nordblad, N. V. Khiem, and N. X. Phuc, Phys. Rev. B: Condens. Matter 59, 4189 (1996).

    Article  ADS  Google Scholar 

  35. B. Martínez, V. Laukhin, J. Fontcuberta, L. Pinsard, and A. Revcolevschi, Phys. Rev. B: Condens. Matter 66, 054436 (2002).

    Article  ADS  Google Scholar 

  36. M. Pissas, I. Margiolaki, G. Papavassiliou, D. Stamopoulos, and D. Argyriou, Phys. Rev. B: Condens. Matter 72, 064425 (2005).

    Article  ADS  Google Scholar 

  37. J. E. Greedan, N. P. Raju, A. Maignan, Ch. Simon, J. S. Pedersen, A. M. Niraimathi, E. Gmelin, and M. A. Subramanian, Phys. Rev. B: Condens. Matter 54, 7189 (1996).

    Article  ADS  Google Scholar 

  38. C. P. Bean, J. Appl. Phys. 26, 1381 (1955); C. P. Bean and J. D. Livingston, J. Appl. Phys. 30, 120S (1955).

    Article  ADS  Google Scholar 

  39. V. Markovich, I. Fita, R. Puzniak, M. I. Tsindlekht, A. Wisniewski, and G. Gorodetsky, Phys. Rev. B: Condens. Matter 66, 094409 (2002); V. Markovich, E. Rozenberg, A. I. Shames, G. Gorodetsky, I. Fita, K. Suzuki, R. Puzniak, D. A. Shulyatev, and Ya.M. Mukovskii, Phys. Rev. B: Condens. Matter 65, 144402 (2002).

    Article  ADS  Google Scholar 

  40. I. G. Deac, J. F. Mitchell, and P. Schiffer, Phys. Rev. B: Condens. Matter 63, 172408 (2002).

    Article  ADS  Google Scholar 

  41. P. A. Algarabel, J. M. De Teresa, J. Blasco, M. R. Ibarra, Cz. Kapusta, M. Sikora, D. Zajac, P. C. Riedi, and C. Ritter, Phys. Rev. B: Condens. Matter 67, 134402 (2003).

    Article  ADS  Google Scholar 

  42. P. Sheng, B. Abeles, and Y. Arie, Phys. Rev. Lett. 31, 44 (1973); J. S. Helman and B. Abeles, Phys. Rev. Lett. 37, 1429 (1976); S. Sankar, A. E. Berkowitz, and D. J. Smith, Phys. Rev. B: Condens. Matter 62, 14273 (2000).

    Article  ADS  Google Scholar 

  43. A. A. Taskin, A. N. Lavrov, and Yoichi Ando, Phys. Rev. B: Condens. Matter 71, 134414 (2005).

    Article  ADS  Google Scholar 

  44. R. Laiho, K. G. Lisunov, E. Lähderanta, M. L. Shubnikov, Yu. P. Stepanov, P. A. Petrenko, A. Khokhulin, and V. S. Zakhvalinskii, J. Phys.: Condens. Matter 18, 10291 (2006).

    Article  ADS  Google Scholar 

  45. L. Balcells, J. Fontcuberta, B. Martez, and X. Obradors, Phys. Rev. B: Condens. Matter 58, R14697 (1998).

    Article  ADS  Google Scholar 

  46. J. A. M. Van Roosmalen, E. H. P. Cordfunke, R. B. Helmholdt, and H. W. Zandbergen, J. Solid State Chem. 110, 100 (1994); J. A. M. Van Roosmalen and E. H. P. Cordfunke, J. Solid State Chem. 110, 106 (1994).

    Article  ADS  Google Scholar 

  47. R. Shiozaki, K. Takenaka, Y. Savaki, and S. Sugai, Phys. Rev. B: Condens. Matter 63, 184419 (2001).

    Article  ADS  Google Scholar 

  48. A. Maignan, C. Simon, V. Caignaert, and B. Raveau, J. Magn. Magn. Mater. 152, L5 (1996).

    Article  ADS  Google Scholar 

  49. P. Kober-Lehouelleur, F. Moussa, M. Hennion, A. Ivanov, L. Pinsard-Gaudart, and A. Revcolevschi, Phys. Rev. B: Condens. Matter 70, 144409 (2004).

    Article  ADS  Google Scholar 

  50. N. I. Solin, V. A. Kazantsev, L. D. Fal’kovskaya, and S. V. Naumov, Phys. Solid State 47(10), 1900 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Solin.

Additional information

Original Russian Text © N.I. Solin, S.V. Naumov, 2013, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 143, No. 1, pp. 166–181.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solin, N.I., Naumov, S.V. Magnetic and electrical properties of weakly doped manganese-deficient La1 − x Ca x Mn1 − z O3 manganites. J. Exp. Theor. Phys. 116, 145–158 (2013). https://doi.org/10.1134/S1063776113010172

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776113010172

Keywords

Navigation