Skip to main content
Log in

The effect of anomalous transparency of the water-air interface for a volumetric sound source

  • Classical Problems of Linear Acoustics and Wave Theory
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

Anomalous transparency consists in the passage at certain frequencies of the majority of a source’s radiated energy through an interface, which usually gives strong reflection. Earlier, this effect was established for low-frequency point sources located in a fluid bounded by an air medium. In the case of volumetric sources, additional scattering of waves occurs between the interface of the media and the emitter surface; and the character of the manifestation of this effect is unclear. This work, using the solution to the integral equation corresponding to a boundary value problem, examines the emission of wave energy by spherical sources of different radius and its distribution between the energy flow passing through the water-air interface into the upper half-space and the energy flow going to infinity in the lower half-space. It has been established that the size of the source has virtually no effect on the energy distribution in the low-frequency range, i.e., on the anomalous transparency effect. We also analyze how the relative dimensions of spherical sources affect the energy characteristics in the mid- and high-frequency range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. A. Godin, Phys. Rev. Lett. 97, 164301 (2006).

    Article  ADS  Google Scholar 

  2. O. A. Godin, Akust. Zh. 53, 353 (2007) [Acoust. Phys. 53, 305 (2007)].

    Google Scholar 

  3. O. A. Godin, Contemp. Phys. 49, 105 (2008).

    Article  ADS  Google Scholar 

  4. M. Hornikx and R. Waxler, J. Comput. Acoust. 18, 297 (2010).

    Article  MathSciNet  Google Scholar 

  5. R. S. Matoza, D. Fee, and M. A. Garcés, J. Geophys. Res. B 115, B12312 (2010).

    Article  ADS  Google Scholar 

  6. O. A. Godin, J. Acoust. Soc. Am. 129, 45 (2011).

    ADS  Google Scholar 

  7. G. H. Koopman, L. Song, and J. B. Fahnline, J. Acoust. Soc. Am. 86, 2433 (1989).

    Article  ADS  Google Scholar 

  8. G. W. Benthien and H. A. Schenck, Comp. Struct. 65, 295 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  9. H. A. Schenck, J. Acoust. Soc. Am. 44, 41 (1968).

    Article  ADS  Google Scholar 

  10. E. V. Glushkov, N. V. Glushkova, A. A. Eremin, and V. V. Mikhas’kiv, Prikl. Mat. Mekh. 73, 622 (2009).

    MathSciNet  Google Scholar 

  11. M. Zampolli, A. Tesei, G. Canepa, and O. A. Godin, J. Acoust. Soc. Am. 123, 4051 (2008).

    Article  ADS  Google Scholar 

  12. L. M. Brekhovskikh and O. A. Godin, Acoustics of Inhomogeneous Media. Vol. 1: Fundamentals of Sound Reflection and Propagation Theory (Nauka, Moscow, 2007) 446 p. [in Russian].

    Google Scholar 

  13. A. G. Sveshnikov, Dokl. Akad. Nauk SSSR 80, 345 (1951).

    MATH  Google Scholar 

  14. N. A. Umov, Selected Papers (Gostekhizdat, Moscow, 1950) [in Russian].

    Google Scholar 

  15. D. M. F. Chapman, J. Acoust. Soc. Am. 124, 48 (2008).

    Article  ADS  Google Scholar 

  16. M. A. Isakovich, General Acoustics (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  17. O. A. Godin, J. Acoust. Soc. Am. 130, EL135 (2011).

    Article  MathSciNet  ADS  Google Scholar 

  18. O. A. Godin, Proc. Conf. OCEANS’11 MTS/IEEE Kona, Hawaii, 2011, pp. 1–9.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Glushkov.

Additional information

Original Russian Text © E.V. Glushkov, N.V. Glushkova, O.A. Godin, 2013, published in Akusticheskii Zhurnal, 2013, Vol. 59, No. 1, pp. 8–18.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glushkov, E.V., Glushkova, N.V. & Godin, O.A. The effect of anomalous transparency of the water-air interface for a volumetric sound source. Acoust. Phys. 59, 6–15 (2013). https://doi.org/10.1134/S106377101206005X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377101206005X

Keywords

Navigation