Skip to main content
Log in

Brownian diffusion of gold nanoparticles in an optical trap studied by fluorescence correlation spectroscopy

  • Laser Spectroscopy
  • Published:
Laser Physics

Abstract

The effect of thermal-induced Brownian motion on gold nanoparticles (Au NPs) in optical traps is studied by fluorescence correlation spectroscopy (FCS) method. The Brownian motion and optical trapping potential are investigated by the decay time of the FCS curve and the laser power. It is shown that that the probability of finding a gold nanoparticle in the trap depends on the ratio of the optical energy of the particle to its thermal energy. A power threshold is observed by the decay time as a function of laser power. The experimental studies show that the temperature rise does not seriously affect the average number of particles in the focal spot, but the average residence time is more sensitively affected by the temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. C. Daniel and D. Astruc, Chem. Rev. 104, 293 (2004).

    Article  Google Scholar 

  2. V. K. Pustovalov and V. A. Babenko, Laser Phys. Lett. 1, 516 (2004).

    Article  ADS  Google Scholar 

  3. C. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, and G. Hüttmann, J. Biomed. Opt. 10, 064012 (2005).

    Article  ADS  Google Scholar 

  4. V. K. Pustovalov, Laser Phys. Lett. 2, 401 (2005).

    Article  ADS  Google Scholar 

  5. C. Yao, X. Qu, Z. Zhang, G. Hüttmann, and R. Rahmanzadeh, J. Biomed. Opt. 14, 054034 (2009).

    Article  ADS  Google Scholar 

  6. A. Lemelle, B. Veksler, I. S. Kozhevnikov, G. G. Akchurin, S. A. Piletsky, and I. Meglinski, Laser Phys. Lett. 6, 71 (2009).

    Article  ADS  Google Scholar 

  7. X. Qu, J. Wang, Z. Zhang, N. Koop, R. Rahmanzadeh, and G. Hüttmann, J. Biomed. Opt. 13, 031217 (2008).

    Article  ADS  Google Scholar 

  8. S. Tanev, V. V. Tuchin, and P. Paddon, Laser Phys. Lett. 3, 594 (2006).

    Article  ADS  Google Scholar 

  9. V. K. Pustovalov and V. A. Babenko, Laser Phys. Lett. 2, 84 (2005).

    Article  ADS  Google Scholar 

  10. P. M. Hansen, V. K. Bhatia, N. Harrit, and I. Oddershede, Nano Lett. 5, 1937 (2005).

    Article  ADS  Google Scholar 

  11. K. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionnest, and N. F. Scherer, Opt. Express 15, 12017 (2007).

    Article  ADS  Google Scholar 

  12. T. Iida and H. Ishihara, Phys. Rev. Lett. 90, 057403 (2003).

    Article  ADS  Google Scholar 

  13. S. Ito, N. Toitani, H. Yamauchi, and H. Miyasaka, Phys. Rev. E 81, 061402 (2010).

    Article  ADS  Google Scholar 

  14. D. Magde, E. L. Elson, and W. W. Webb, Phys. Rev. Lett. 29, 705 (1972).

    Article  ADS  Google Scholar 

  15. D. Magde, E. L. Elson, and W. W. Webb, Biopolymers 13, 29 (1974).

    Article  Google Scholar 

  16. C. Hosokawa, H. Yoshikawa, and H. Masuhara, Phys. Rev. E 72, 021408 (2005).

    Article  ADS  Google Scholar 

  17. M. Wahl, I. Gregor, M. Patting, and J. Enderlein, Opt. Express 11, 3583 (2003).

    Article  ADS  Google Scholar 

  18. A. Benda, M. Hof, M. Wahl, M. Patting, R. Erdmann, and P. Kapusta, Rev. Sci. Instrum. 76, 003106 (2005).

    Article  Google Scholar 

  19. P. Kapusta, M. Wahl, A. Benda, M. Hof, and J. Enderlein, J. Fluoresc. 17, 43 (2007).

    Article  Google Scholar 

  20. S. T. Hess, S. Huang, A. A. Heikal, and W. W. Webb, Biochem. 41, 697 (2002).

    Article  Google Scholar 

  21. C. Hosokawa, H. Yoshikawa, and H. Masuhara, Jpn. J. Appl. Phys. 45, 453 (2006).

    Article  ADS  Google Scholar 

  22. J. A. Dix, E. F. Y. Hom, and A. S. Verkman, J. Phys. Chem. B 110, 1896 (2006).

    Article  Google Scholar 

  23. T. Wocjan, J. Krieger, O. Krichevsky, and J. Langowski, Phys. Chem. Chem. Phys. 11, 10671 (2009).

    Article  Google Scholar 

  24. T. J. Davis, Opt. Express 15, 2702 (2007).

    Article  ADS  Google Scholar 

  25. C. D. Geddes, A. Parfenov, I. Gryczynski, and J. R. Lakowicz, Chem. Phys. Lett. 380, 269 (2003).

    Article  ADS  Google Scholar 

  26. V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, Laser Phys. Lett. 5, 775 (2008).

    Article  ADS  Google Scholar 

  27. E. Y. Lukianova-Hleb and D. O. Lapotko, Nano Lett. 9, 2160 (2009).

    Article  ADS  Google Scholar 

  28. Y. Seal, A. E. Carpenter, and T. T. Perkins, Opt. Lett. 31, 2429 (2006).

    Article  ADS  Google Scholar 

  29. A. Vogel, J. Noack, G. Hüttmann, and G. Paltauf, Appl. Phys. B 81, 1015 (2005).

    Article  ADS  Google Scholar 

  30. A. V. Kabashin, Laser Phys. 19, 1136 (2009).

    Article  ADS  Google Scholar 

  31. P. Pavlova, E. Borisova, L. Avramov, El. Petkova, and P. Troyanova, Laser Phys. 20, 596 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. X. Zhang.

Additional information

Original Text © Astro, Ltd., 2011.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Li, Z., Yao, C.P. et al. Brownian diffusion of gold nanoparticles in an optical trap studied by fluorescence correlation spectroscopy. Laser Phys. 21, 130–136 (2011). https://doi.org/10.1134/S1054660X1101021X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X1101021X

Keywords

Navigation