Skip to main content
Log in

Influence of ultrasonic, microwave, and thermal effects on photoinduced charge transfer in poly(3-hexylthiophene)-Methanofullerene composites: EPR study

  • Functional Polymers
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

Radical pairs, polarons, and anion radicals of fullerenes that are induced in bulk heterojunctions of two composites, poly(3-hexylthiophene) with 6,6-phenyl-C61-butanoic acid methyl ester and with 6,6-phenyl-C62-butanoic acid bis(methyl ester), by photons with an energy of 1.98–2.73 eV at 77 K are studied via the method of photoinduced electron paramagnetic resonance. It is found that a part of the polarons and anion radicals of fullerenes are entrapped by energy traps of the polymer matrix, the quantity and depth of which are determined by ordering in the composites and the energy of exciting photons. A comparative study of the influence of composite treatment with ultrasonic, microwave, and thermal annealing on the formation and main resonance parameters of spin charge carriers in these bulk heterojunctions demonstrates a sharp gain in the number of charge carriers during illumination of the polymer-methanofullerene system, and the maximum effect is observed for photons with energies of 1.98 and 2.1 eV. This treatment procedure leads to the development of crystalline domains in the polymer matrix and increases the efficiency of light-energy conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. So, J. Kido, and P. Burrows, Mater. Res. Soc. Bull. 33, 663 (2008).

    Article  CAS  Google Scholar 

  2. G. D. Sharma, Physics of Nanostructured Solar Cells (Nova Science, New York, 2010), p. 363.

    Google Scholar 

  3. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, Prog. Photovoltaics 18, 346 (2010).

    Article  Google Scholar 

  4. D. Hertel and H. Bassler, Chem. Phys. Chem. 9, 666 (2008).

    Article  CAS  Google Scholar 

  5. B. M. Illescas and N. Martin, in Handbook of Nanophysics: Clusters and Fullerenes, Ed. by K. D. Sattler (CRC, Boca Raton, FL, 2010), p. 909.

  6. J. M. Ginder, A. J. Epstein, and A. G. MacDiarmid, Synth. Met. 43, 3431 (1991).

    Article  CAS  Google Scholar 

  7. M. Lenes, G. J. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen, and P. W. M. Blom, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 20, 2116 (2008).

    Article  CAS  Google Scholar 

  8. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nature Mater. 4, 864 (2005).

    Article  CAS  Google Scholar 

  9. J. H. Huang, K. C. Li, F. C. Chien, Y. S. Hsiao, D. Kekuda, P. L. Chen, H. C. Lin, K. C. Ho, and C. W. Chu, J. Phys. Chem. C 114, 9062 (2010).

    Article  CAS  Google Scholar 

  10. D. Jarzab, F. Cordella, M. Lenes, F. B. Kooistra, P.W.M. Blom, J. C. Hummelen, and M. A. Loi, J. Phys. Chem. B 113, 16513 (2009).

    Article  CAS  Google Scholar 

  11. J. Schafferhans, C. Deibel, and V. Dyakonov, Adv. Energy Mater. 1, 655 (2011).

    Article  CAS  Google Scholar 

  12. J. H. Buriak, Chem. Rev. 100, 1271 (2002).

    Article  Google Scholar 

  13. T. M. Atkins, A. Thibert, D. S. Larsen, S. Dey, N. D. Browning, and S. M. Kauzlarich, J. Am. Chem. Soc. 22, (2011). DOI: 10.1021/ja207344u.

  14. V. I. Krinichnyi and E. I. Yudanova, Solar Energy Mater. Solar Cells 95, 2302 (2011).

    Article  CAS  Google Scholar 

  15. C. Brabec, U. Scherf, and V. Dyakonov, Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies (Wiley-VCH, Weinheim, 2008).

    Book  Google Scholar 

  16. V. I. Krinichnyi, in Encyclopedia of Polymer Composites: Properties, Performance and Applications, Ed. by M. Lechkov and S. Prandzheva (Nova Science, New York, 2009), Chap. 11, p. 417.

  17. V. I. Krinichnyi and A. A. Balakai, Appl. Magn. Reson. 39, 319 (2010).

    Article  CAS  Google Scholar 

  18. V. I. Krinichnyi, E. I. Yudanova, and N. G. Spitsina, J. Phys. Chem. C 114, 16756 (2010).

    Article  CAS  Google Scholar 

  19. F. Witt, M. Kruszynska, H. Borchert, and J. Parisi, J. Phys. Chem. Lett. 1, 2999 (2010).

    Article  CAS  Google Scholar 

  20. R. D. McCullough, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 10, 93 (1998).

    Article  CAS  Google Scholar 

  21. C. P. Poole, Electron Spin Resonance: A Comprehensive Treatise on Experimental Techniques (Wiley, New York, 1983).

    Google Scholar 

  22. K. Marumoto, Y. Muramatsu, N. Takeuchi, and S. Kuroda, Synth. Met. 135, 433 (2003).

    Article  Google Scholar 

  23. R. A. J. Janssen, D. Moses, and N. S. Sariciftci, J. Chem. Phys. 101, 9519 (1994).

    Article  CAS  Google Scholar 

  24. V. I. Krinichnyi, Acta Mater. 56, 1427 (2008).

    Article  CAS  Google Scholar 

  25. V. I. Krinichnyi, Solar Energy Mater. Solar Cells 92, 942 (2008).

    Article  CAS  Google Scholar 

  26. S. S. Eaton and G. R. Eaton, Appl. Magn. Reson. 11, 155 (1996).

    Article  CAS  Google Scholar 

  27. J. E. Wertz and J. R. Bolton, Electron Spin Resonance: Elementary Theory and Practical Applications (Chapman and Hall, London, 1986).

    Book  Google Scholar 

  28. K. I. Zamaraev, Yu. P. Molin, and K. M. Salikhov, Spin Exchange (Nauka, Novosibirsk, 1977) [in Russian].

    Google Scholar 

  29. Y.-K. Lan and C.-I. Huang, J. Phys. Chem. B 112, 14857 (2008).

    Article  CAS  Google Scholar 

  30. D. L. Cheung, D. P. McMahon, and A. Troisi, J. Phys. Chem. B 113, 9393 (2009).

    Article  CAS  Google Scholar 

  31. A. Troisi and G. J. Orlandi, J. Phys. Chem. A 110, 4065 (2006).

    Article  CAS  Google Scholar 

  32. B. Yan, N. A. Schultz, A. L. Efros, and P. C. Taylor, Phys. Rev. Lett. 84, 180 (2000).

    Article  Google Scholar 

  33. M. Al-Ibrahim, H. K. Roth, M. Schroedner, A. Konkin, U. Zhokhavets, G. Gobsch, P. Scharff, and S. Sensfuss, Org. Electron. 6, 65 (2005).

    Article  CAS  Google Scholar 

  34. V. I. Krinichnyi, Synth. Met. 108, 173 (2000).

    Article  CAS  Google Scholar 

  35. A. Abragam, The Principles of Nuclear Magnetism (Clarendon, Oxford, 1961; Inostrannaya Literatura, Moscow, 1963).

    Google Scholar 

  36. M. Nechtschein, in Handbook of Conducting Polymers, Ed. by T. A. Skotheim, R. L. Elsenbaumer, and J. R. Reynolds (Marcel Dekker, New York, 1997), p. 141.

  37. S. Kivelson and A. J. Heeger, Synth. Met. 22, 371 (1988).

    Article  CAS  Google Scholar 

  38. V. I. Krinichnyi, H. K. Roth, and A. L. Konkin, Physica B (Amsterdam) 344, 430 (2004).

    CAS  Google Scholar 

  39. V. I. Krinichnyi and H. K. Roth, Appl. Magn. Reson. 26, 395 (2004).

    Article  CAS  Google Scholar 

  40. V. I. Krinichnyi, H. K. Roth, and M. Schrodner, Appl. Magn. Reson. 23, 1 (2002).

    Article  CAS  Google Scholar 

  41. I. I. Fishchuk, A. K. Kadashchuk, H. Bassler, and D. S. Weiss, Phys. Rev. B: Condens. Matter 66, 205208 (2002).

    Article  Google Scholar 

  42. G. E. Pike, Phys. Rev. B: Condens. Matter 6, 1572 (1972).

    Article  CAS  Google Scholar 

  43. R. Tycko, G. Dabbagh, R. M. Fleming, R. C. Haddon, A. V. Makhija, and S. M. Zahurak, Phys. Rev. Lett. 67, 1886 (1991).

    Article  CAS  Google Scholar 

  44. N. N. Denisov, V. I. Krinichnyi, and V. A. Nadtochenko, in Fullerenes. Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, Ed. by K. Kadish and R. Ruoff (The Electrochemical Society, Pennington, 1997), p. 139.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Yudanova.

Additional information

Original Russian Text © E.I. Yudanova, V.I. Krinichnyi, 2013, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2013, Vol. 55, No. 4, pp. 391–402.

This work was supported by the Russian Foundation for Basic Research, project no. 12-03-00148.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yudanova, E.I., Krinichnyi, V.I. Influence of ultrasonic, microwave, and thermal effects on photoinduced charge transfer in poly(3-hexylthiophene)-Methanofullerene composites: EPR study. Polym. Sci. Ser. A 55, 233–243 (2013). https://doi.org/10.1134/S0965545X13040081

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X13040081

Keywords

Navigation