Skip to main content
Log in

Quasispaces induced by vector fields measurable in ℝ3

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We study some metric functions that are induced by a class of basis vector fields in ℝ3 with measurable coordinates. These functions are proved to be quasimetrics in the domain of definition of the vector fields. Under some natural constraints, the Rashevsky-Chow Theorem and the Ball-Box Theorem are established for the classes of vector fields we consider.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Citti G. and Montanari A., “Regularity properties of solutions of a class of elliptic-parabolic nonlinear Levi type equations,” Trans. Amer. Math. Soc., 354,No. 7, 2819–2848 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  2. Montanari A. and Morbidelli D., “Nonsmooth Hörmander vector fields and their controlled balls,” arxiv.org.2008.0812.2369v1.

  3. Slodkowski Z. and Tomassini G., “Weak solutions for the Levi equation and envelope of holomorphy,” J. Funct. Anal., 101,No. 2, 392–407 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  4. Slodkowski Z. and Tomassini G., “Evolution of subsets in ℂ2 and a parabolic problem for the Levi equation,” Ann. Sc. Norm. Super. Pisa Cl. Sci., 25, No. 4, 757–784 (1997).

    MathSciNet  MATH  Google Scholar 

  5. Hörmander L., “Hypoelliptic second order differential equations,” Acta Math., 119, No. 3–4, 147–171 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  6. Gromov M., “Carnot-Carathéodory spaces seen from within,” in: Sub-Riemannian Geometry, Birkhäuser, Basel, 1996, pp. 79–323.

    Chapter  Google Scholar 

  7. Rashevsky P. K., “About the possibility to connect any two points of a completely nonholonomic space by an admissible curve,” Uchen. Zap. Mosk. Ped. Inst. Ser. Fiz.-Mat. Nauk, 3, No. 2, 83–94 (1938).

    Google Scholar 

  8. Chow W. L., “Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung,” Math. Ann., 117, 98–105 (1939).

    Article  MathSciNet  Google Scholar 

  9. Nagel A., Stein E. M., and Wainger S., “Balls and metrics defined by vector fields. I: Basic properties,” Acta Math., 155, No. 1–2, 103–147 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  10. Stein E. M., “Some geometrical concepts arising in harmonic analysis,” in: GAFA 2000. Visions in Mathematics-Towards 2000. Proceedings of a Meeting, Tel Aviv, Israel, August 25–September 3, 1999. Part I, Birkhäuser, Basel, 2000, pp. 434–453.

    Google Scholar 

  11. Stein E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton (1993).

    MATH  Google Scholar 

  12. Nemytskiĭ V. V. and Stepanov V. V., Qualitative Theory of Differential Equations [in Russian], Gostekhizdat, Moscow and Leningrad (1949).

    Google Scholar 

  13. Helgason S., Differential Geometry and Symmetric Spaces, Academic Press, New York and London (1962).

    MATH  Google Scholar 

  14. Bellaïche A., “The tangent space in sub-Riemannian geometry,” in: Sub-Riemannian Geometry, Birkhäuser, Basel, 1996, pp. 1–78.

    Chapter  Google Scholar 

  15. Citti G., “C -regularity of solutions of a quasilinear equation related to the Levi operator,” Ann. Sc. Norm. Super. Pisa Cl. Sci., 23, No. 4, 483–529 (1996).

    MathSciNet  MATH  Google Scholar 

  16. Franchi B. and Lanconelli E., “Holder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients,” Ann. Sc. Norm. Super. Pisa Cl. Sci., 10, No. 4, 523–541 (1983).

    MathSciNet  MATH  Google Scholar 

  17. Vodopyanov S. K. and Karmanova M. B., “Subriemannian geometry under minimal smoothness of vector fields,” Dokl. Akad. Nauk, 422, No. 5, 583–588 (2008).

    MathSciNet  Google Scholar 

  18. Montanari A. and Morbidelli D., “Step-s involutive families of vector fields, their orbits and the Poincaré inequality,” available at arxiv.org. 2012. 1106.2410v2.

  19. Bonfiglioli A., Lanconelli E., and Uguzzoni F., Stratified Lie Groups and Potential Theory for Their Sub-Laplacian, Springer-Verlag, Berlin and Heidelberg (2007).

    Google Scholar 

  20. Korányi A. and Reimann H. M., “Foundations for the theory of quasiconformal mappings on the Heisenberg group,” Adv. Math., 111, No. 1, 1–87 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  21. Greshnov A. V., “On one class of Lipschitz vector fields in ℝ3,” Siberian Math. J., 51, No. 3, 410–418 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  22. Sansone G., Ordinary Differential Equations. Vol. 2 [Russian translation], Izdat. Inostr. Lit., Moscow (1954).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Greshnov.

Additional information

Original Russian Text Copyright © 2012 Belykh A.V. and Greshnov A.V.

The authors were partially supported by the Federal Target Program “Scientific and Scientific-Pedagogical Personnel of Innovative Russia” for 2009–2013 (State Contract No. 8206).

__________

Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 53, No. 6, pp. 1231–1244, November–December, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belykh, A.V., Greshnov, A.V. Quasispaces induced by vector fields measurable in ℝ3 . Sib Math J 53, 984–995 (2012). https://doi.org/10.1134/S0037446612060031

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446612060031

Keywords

Navigation