Skip to main content
Log in

Main reactions determining heat evolution in hydrogen-oxygen combustion

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The contributions from various elementary reactions to the overall heat evolution rate in the propagation of hydrogen-air flames at atmospheric pressure have been determined. The study has been carried out by solving the system of kinetic equations and a heat balance equation, involving component concentration and temperature data available from the literature. The key role in heat evolution and in the propagation of the steady-state combustion wave is played by the set of reactions that lead to reaction chain branching. The contribution from the hydrogen atom recombination reaction to the overall heat evolution does not exceed 7% even for rich mixtures and cannot ensure flame propagation without contributions from other exothermic reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Semenov, N.N., O nekotorykh problemakh khimicheskoi kinetiki i reaktsionnoi sposobnosti (Topics in Chemical Kinetics and Reactivity), Moscow: Akad. Nauk SSSR, 1958.

    Google Scholar 

  2. Baldwin, R.R. and Simons, R.F., Trans. Faraday Soc., 1957, vol. 53, p. 955.

    Article  CAS  Google Scholar 

  3. Karmilova, L.V., Nalbandyan, A.B., and Semenov, N.N., Zh. Fiz. Khim., 1958, vol. 32, no. 6, p. 1193.

    CAS  Google Scholar 

  4. Voevodskii, V.V., Fizika i khimiya elementarnykh khimicheskikh protsessov (Physics and Chemistry of Elementary Chemical Porcesses), Moscow: Nauka, 1969.

    Google Scholar 

  5. Azatyan, V.V. and Semenov, N.N., Kinet. Katal., 1972, vol. 13, no. 1, p. 17.

    CAS  Google Scholar 

  6. Lewis, B. and von Elbe, G., Combustion, Flames and Explosions of Gases, New York: Academic, 1987..

    Google Scholar 

  7. Azatyan, V.V., Nalbandyan, A.B., and Tsui Men-Yuan’, Dokl. Akad. Nauk SSSR, 1962, vol. 147, no. 2, p. 361.

    CAS  Google Scholar 

  8. Azatyan, V.V., Romanovich, L.B., and Sysoeva, S.G., Fiz. Goreniya Vzryva, 1967, vol. 2, no. 1, p. 77.

    Google Scholar 

  9. Azatyan, V.V., Gontkovskaya, V.T., and Merzhanov, A.G., Fiz. Goreniya Vzryva, 1973, vol. 9, no. 2, p. 163.

    CAS  Google Scholar 

  10. Azatyan, V.V., Andreeva, N.V., and El’natanov, A.I., Khim. Fiz., 1988, vol. 7, no. 8, p. 821.

    CAS  Google Scholar 

  11. Azatyan, V.V., Andrianova, Z.S., and Ivanova, A.N., Khim. Fiz., 1998, vol. 17, no. 8, p. 117.

    CAS  Google Scholar 

  12. Azatyan, V.V., Andrianova, Z.S., and Ivanova, A.N., Kinet. Catal., 2010, vol. 51, no. 3, p. 337.

    Article  CAS  Google Scholar 

  13. Azatyan, V.V., Gaganidze, K.I., Kolesnikov, S.A., and Trubnikov, G.R., Kinet. Katal., 1982, vol. 23, no. 1, p. 244.

    CAS  Google Scholar 

  14. Baulch, D.L., Bowman, C.T., Cobos, C.J., Bauman, C.T., Just, Th., Troe, J., Walker, R.W., and Warnatz, J., J. Phys. Chem. Ref. Data, 2005, vol. 34, no. 3, p. 757.

    Article  CAS  Google Scholar 

  15. Termodinamicheskie svoistva individual’nykh veshchestv (Thermodynamic Properties of Individual Compounds), Glushko, V.P., Ed., Moscow: Akad. Nauk SSSR, 1962.

    Google Scholar 

  16. Energii razryva khimicheskikh svyazei, potentsialy ionizatsii i srodstvo k elektronu (Bond Dissociation Energies, Ionization Potentials, and Electron Affinity), Kondrat’ev, V.I., Ed., Moscow: Nauka, 1974.

    Google Scholar 

  17. Peters, N. and Rogg, B., Reduced Kinetic Mechanisms for Applications in Combustion Systems, Berlin: Springer, 1992.

    Google Scholar 

  18. Petrova, L.D., Azatyan, V.V., Baratov, A.N., Vogman, L.P., and Makeev, V.I., in Gorenie i vzryv (Combustion and Explosion), Moscow: Nauka, 1977, p. 526.

    Google Scholar 

  19. Azatyan, V.V., Kinet. Catal., 1996, vol. 37, no. 4, p. 461.

    Google Scholar 

  20. Azatyan, V.V., Borisov, A.A., Merzhanov, A.G., and Kalachev, V.I., Fiz. Goreniya Vzryva, 2005, vol. 41, no. 1, p. 3.

    CAS  Google Scholar 

  21. Azatyan, V.V., Andrianova, Z.S., and Ivanova, A.N., Russ. J. Phys. Chem., 2006, vol. 80, no. 7, p. 1044.

    Article  CAS  Google Scholar 

  22. Azatyan, V.V., Andrianova, Z.S., and Ivanova, A.N., Kinet. Catal., 2010, vol. 51, no. 4, p. 461.

    Article  CAS  Google Scholar 

  23. Korobeinichev, O.P., Shmakov, A.G., Rybitskaya, I.V., Bolysheva, E.A., Chernov, A.A., Knyaz’kov, D.A., and Konnov, A.A., Kinet. Catal., 2009, vol. 50, no. 2, p. 156.

    Article  CAS  Google Scholar 

  24. Azatyan, V.V. and Shavard, A.A., Kinet. Katal., 1977, vol. 18, no. 3, p. 596.

    CAS  Google Scholar 

  25. Zel’dovich, Ya.B., Kinet. Katal., 1961, vol. 2, no. 2, p. 305.

    Google Scholar 

  26. Zel’dovich, Ya.B., Barenblat, G.I., Librovich, V.B., and Makhviladze, G.M., Matematicheskaya teoriya goreniya i vzryva (Mathematical Theory of Combustion and Explosion), Moscow: Nauka, 1980.

    Google Scholar 

  27. Rubtsov, N.M., Seplyarskii, B.S., Chernish, V.I., and Tsvetkov, G.I., Mendeleev Commun., 2008, vol. 18, no. 1, p. 105.

    Article  CAS  Google Scholar 

  28. Rubtsov, N.M., Seplyarskii, B.S., Chernysh, V.I., and Tsvetkov, G.I., Theor. Found. Chem. Eng., 2008, vol. 42, no. 6, p. 882.

    Article  CAS  Google Scholar 

  29. Warnatz, J., Maas, U., and Dibble, R.W., Combustion: Physical and Chemical Fundamentals, Modeling and Simulations, Experiments, Pollutant Formation, Heidelberg: Springer, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Azatyan.

Additional information

Original Russian Text © V.V. Azatyan, Z.S. Andrianova, A.A. Borisov, A.N. Ivanova, 2012, published in Kinetika i Kataliz, 2012, Vol. 53, No. 6, pp. 683–689.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azatyan, V.V., Andrianova, Z.S., Borisov, A.A. et al. Main reactions determining heat evolution in hydrogen-oxygen combustion. Kinet Catal 53, 641–647 (2012). https://doi.org/10.1134/S002315841206002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002315841206002X

Keywords

Navigation