Skip to main content
Log in

Nambu sum rule in the NJL Models: from superfluidity to top quark condensation

  • Fields, Particles, and Nuclei
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

It may appear that the recently found resonance at 125 GeV is not the only Higgs boson. We point out the possibility that the Higgs bosons appear in models of top-quark condensation, where the masses of the bosonic excitations are related to the top quark mass by the sum rule similar to the Nambu sum rule of the NJL models [1]. This rule was originally considered by Nambu for superfluid 3He-B and for the BCS model of superconductivity. It relates the two masses of bosonic excitations existing in each channel of Cooper pairing to the fermion mass. An example of the Nambu partners is provided by the amplitude and the phase modes in the BCS model describing Cooper pairing in the s-wave channel. This sum rule suggests the existence of the Nambu partners for the 125 GeV Higgs boson. Their masses can be predicted by the Nambu sum rule under certain circumstances. For example, if there are only two states in the given channel, the mass of the Nambu partner is ∼ 325 GeV. They together satisfy the Nambu sum rule M 21 + M 22 = 4M 2 t , where M t ∼ 174 GeV is the mass of the top quark. If there are two doubly degenerated states, then the second mass is ∼210 GeV. In this case the Nambu sum rule is 2M 21 + 2M 22 = 4M 2 t . In addition, the properties of the Higgs modes in superfluid 3He-A, where the symmetry breaking is similar to that of the Standard Model of particle physics, suggest the existence of two electrically charged Higgs particles with masses around 245 GeV, which together also obey the Nambu sum rule M 2+ + M 2 = 4M 2 t .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Nambu, Physica D 15, 147 (1985); in BCS: 50 Years, Ed. by L. N. Cooper and D. Feldman (World Scientific, Singapore, 2010).

    Article  ADS  Google Scholar 

  2. Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).

    Article  ADS  Google Scholar 

  3. F. Englert and R. Brout, Phys. Rev. Lett. 13, 321 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  4. P. Higgs, Phys. Rev. Lett. 13, 508 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  5. G. Guralnik, C. R. Hagen, and T. W. B. Kibble, Phys. Rev. Lett. 13, 585 (1964).

    Article  ADS  Google Scholar 

  6. CMS Collab., arXiv:1209.3937; CMS-HIG-12-010; CERN-PH-EP-2012-253; CMS Collab., Phys. Lett. B 716, 30 (2012); arXiv:1207.7235; CMS-HIG-12-028; CERN-PH-EP-2012-220; CMS Collab., arXiv:1207.2666; CMS-HIG-12-005; CERN-PH-EP-2012-169.

    Article  ADS  Google Scholar 

  7. ATLAS Collab., Phys. Lett. B 716, 1 (2012); CERN-PH-EP-2012-218, arXiv:1207.7214 [hep-ex].

    Article  ADS  Google Scholar 

  8. CMS Collab., CMS PAS HIG-12-020. http://cdsweb.cern.ch/record/1460438/files/HIG-12-020-pas.pdf.

  9. http://cdsweb.cern.ch/record/1470512/files/ATL-PHYS-SLIDE-2012-459.pdf.

  10. CDF Collab., CDF/PUB/EXOTICS/PUBLIC/10603 (2011).

    Google Scholar 

  11. CMS Collab., Phys. Rev. Lett. 108, 111804 (2012); arXiv:1202.1997.

    Article  ADS  Google Scholar 

  12. K. A. Meissner and H. Nicolai, arXiv:1208.5653.

  13. L. Maiani, A. D. Polosa, and V. Riquer, arXiv:1202.5998.

  14. ATLAS Collab., Phys. Lett. B 710, 49 (2012). http://atlas.ch/news/2011/Higgs-note.pdf.

    Article  ADS  Google Scholar 

  15. G. E. Volovik and M. A. Zubkov, arXiv:1209.0204.

  16. V. A. Miransky, M. Tanabashi, and K. Yamawaki, Phys. Lett. B 221, 177 (1989); Mod. Phys. Lett. A 4, 1043 (1989).

    Article  ADS  Google Scholar 

  17. W. A. Bardeen, Ch. T. Hill, and M. Lindner, Phys. Rev. D 41, 1647 (1990).

    Article  ADS  Google Scholar 

  18. D. Vollhardt and P. Wölfle,, The Superfluid Phases of Helium 3 (Taylor Francis, London, 1990).

    Google Scholar 

  19. S. Gazit, D. Podolsky, and A. Auerbach, arXiv:1212.3759

  20. Y. Barlas and C. M. Varma, arXiv:1206.0400.

  21. K. Chen, L. Liu, Y. Deng, et al., arXiv:1301.3139.

  22. R. Movshovich, E. Varoquaux, N. Kim, and D. M. Lee, Phys. Rev. Lett. 61, 1732 (1988).

    Article  ADS  Google Scholar 

  23. C. A. Collett, J. Pollanen, J. I. A. Li, et al., arXiv:1208.2650.

  24. G. E. Volovik and T. Vachaspati, Int. J. Mod. Phys. B 10, 471 (1996); cond-mat/9510065.

    Article  ADS  Google Scholar 

  25. P. N. Brusov and V. N. Popov, Sov. Phys. JETP 52, 945 (1980).

    ADS  Google Scholar 

  26. G. E. Volovik and M. V. Khazan, Sov. Phys. JETP 55, 867 (1982); Sov. Phys. JETP 58, 551 (1983).

    Google Scholar 

  27. P. N. Brusov and V. N. Popov, Sov. Phys. JETP 53, 804 (1981).

    Google Scholar 

  28. C. V. Roubillard, arXiv:hep-ph/0503289; C. Valenzuela, Phys. Rev. D 71, 095014 (2005); arXiv:hepph/0503111.

    Article  Google Scholar 

  29. M. Hashimoto and V. A. Miransky, Phys. Rev. D 81, 055014 (2010); arXiv:0912.4453.

    Article  ADS  Google Scholar 

  30. M. A. Zubkov, arXiv:1301.6971.

  31. M. Alford, K. Rajagopal, and F. Wilczek, Nucl. Phys. B 537, 443 (1999).

    Article  ADS  Google Scholar 

  32. M. Buballa, Phys. Rep. 407, 205 (2005).

    Article  ADS  Google Scholar 

  33. D. Ebert, K. G. Klimenko, and V. L. Yudichev, Eur. Phys. J. C 53, 65 (2008).

    Article  ADS  Google Scholar 

  34. R. Anglani, M. Mannarelli, and M. Ruggieri, New J. Phys. 13, 055002 (2011).

    Article  ADS  Google Scholar 

  35. M. Eto, M. Nitta, and N. Yamamoto, Phys. Rev. Lett. 104, 161601 (2010); M. Eto and M. Nitta, Phys. Rev. D 80, 125007 (2009).

    Article  ADS  Google Scholar 

  36. G. L. Alberghi, A. Y. Kamenshchik, A. Tronconi, et al., JETP Lett. 88, 705 (2008); arXiv:0804.4782.

    Article  ADS  Google Scholar 

  37. V. P. Frolov and D. Fursaev, Phys. Rev. D 58, 124009 (1998); arXiv:hep-th/9806078.

    Article  MathSciNet  ADS  Google Scholar 

  38. V. Frolov, D. Fursaev, and A. Zelnikov, J. High Energy Phys. 0303, 038 (2003); arXiv:hep-th/0302207.

    Article  MathSciNet  ADS  Google Scholar 

  39. Ya. B. Zeldovich, Sov. Phys. Usp. 11, 381 (1968).

    Article  ADS  Google Scholar 

  40. M. Veltman, Acta Phys. Polon. B 12, 437 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Volovik.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volovik, G.E., Zubkov, M.A. Nambu sum rule in the NJL Models: from superfluidity to top quark condensation. Jetp Lett. 97, 301–306 (2013). https://doi.org/10.1134/S0021364013060167

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364013060167

Keywords

Navigation