Skip to main content
Log in

Nonclassical rotations of single molecules in small helium and hydrogen clusters: Manifestation of “microscopic superfluidity”

  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The studies of small helium clusters (up to 100 atoms) and molecular-hydrogen clusters (up to 20 molecules) that are formed in a supersonic gas jet and are coupled by the weak van der Waals interaction with a linear chromophore molecule are reviewed The shift of the frequency of the fundamental vibration of the chromophore, as well as a change in the moment of inertia of a cluster with its growth, has been detected by their rotational and vibrational-rotational spectra. A nonclassical behavior of the moment of inertia manifested in its decrease beginning with a certain number of attached He atoms (H2 molecules) has been revealed. This behavior indicates that a part of a cluster is decoupled from the rotational motion of a molecule. The key question of these studies is whether such behavior of the moment of inertia is the manifestation of the super-fluidity of helium and hydrogen at microscopic level. The results are compared to the spectroscopy of molecules and hydrogen clusters in liquid-helium nanodroplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Leggett, Rev. Mod. Phys. 71, S318 (1999).

    Article  Google Scholar 

  2. S. Grebenev, J. P. Toennies, and A. F. Vilesov, Science 279, 2083 (1998).

    Article  ADS  Google Scholar 

  3. V. S. Babichenko and Yu. Kagan, Phys. Rev. Lett. 83, 3458 (1999).

    Article  ADS  Google Scholar 

  4. J. P. Toennies and A. F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004).

    Article  Google Scholar 

  5. C. Callegari, W. Jäger, and F. Stienkemeier, Helium Nanodroplets, in Handbook of Nanophysics: Nanoparticles and Quantum Dots, Ed. by K. D. Sattler (CRC Press, Boca Raton, 2011).

  6. F. Stinkemeier and K. K. Lehmann, J. Phys. B 39, 127 (2006).

    Article  ADS  Google Scholar 

  7. B. S. Dumesh and L. A. Surin, Phys. Usp. 49, 1113 (2006).

    Article  ADS  Google Scholar 

  8. K. von Haeften and M. Havenith, in Electronic Excitations in Liquefied Rare Gases, Ed. by W. F. Schmidt and E. Illenberger (American Scientific Publ., 2005).

  9. G. N. Makarov, Phys. Usp. 47, 217 (2004).

    Article  ADS  Google Scholar 

  10. L. F. Gomez, E. Loginov, and A. F. Vilesov, Phys. Rev. Lett. 108, 155302 (2012).

    Article  ADS  Google Scholar 

  11. E. L. Andronikashvili, Zh. Eksp. Teor. Fiz. 16, 780 (1946); Zh. Eksp. Teor. Fiz. 18, 424 (1948).

    Google Scholar 

  12. M. D. Brookes, C. Xia, J. Tang, et al., Spectrochim. Acta A 60, 3235 (2004).

    Article  ADS  Google Scholar 

  13. Y. Xu and W. Jäger, J. Chem. Phys. 106, 7968 (1997).

    Article  ADS  Google Scholar 

  14. L. A. Surin, B. S. Dumesh, F. Lewen, et al., Rev. Sci. Instrum. 72, 2535 (2001).

    Article  ADS  Google Scholar 

  15. V. Markov, Y. Xu, and W. Jäger, Rev. Sci. Instrum. 69, 4061 (1998).

    Article  ADS  Google Scholar 

  16. L. A. Surin, D. N. Fourzikov, F. Lewen, et al., J. Mol. Spectrosc. 222, 93 (2003).

    Article  ADS  Google Scholar 

  17. J. Tang, Y. Xu, A. R. W. McKellar, and W. Jäger, Science 297, 2030 (2002).

    Article  ADS  Google Scholar 

  18. A. R. W. McKellar, Y. Xu, and W. Jäger, J. Phys. Chem. A 111, 7329 (2007).

    Article  Google Scholar 

  19. A. R. W. McKellar, Y. Xu, and W. Jäger, Phys. Rev. Lett. 97, 183401 (2006).

    Article  ADS  Google Scholar 

  20. F. Paesani, A. Viel, F. A. Gianturco, and K. B. Whaley, Phys. Rev. Lett. 90, 073401 (2003).

    Article  ADS  Google Scholar 

  21. S. Moroni, A. Sarsa, S. Fantoni, et al., Phys. Rev. Lett. 90, 143401 (2003).

    Article  ADS  Google Scholar 

  22. Y. Xu, W. Jäger, J. Tang, and A. R. W. McKellar, Phys. Rev. Lett. 91, 163401 (2003).

    Article  ADS  Google Scholar 

  23. J. Tang, A. R. W. McKellar, F. Mezzacapo, and S. Moroni, Phys. Rev. Lett. 92, 145503 (2004).

    Article  ADS  Google Scholar 

  24. W. Topic, W. Jäger, N. Blinov, et al., J. Chem. Phys. 125, 144310 (2006).

    Article  ADS  Google Scholar 

  25. K. Szalewicz, Int. Rev. Phys. Chem. 27, 273 (2008).

    Article  Google Scholar 

  26. A. R. W. McKellar, J. Chem. Phys. 127, 044315 (2007).

    Article  ADS  Google Scholar 

  27. A. R. W. McKellar, J. Chem. Phys. 128, 044308 (2008).

    Article  ADS  Google Scholar 

  28. A. R. W. McKellar, Y. Xu, W. Jäger, and C. Bissonnette, J. Chem. Phys. 110, 10766 (1999).

    Article  ADS  Google Scholar 

  29. L. A. Surin, D. A. Roth, I. Pak, et al., J. Chem. Phys. 112, 4064 (2000); J. Chem. Phys. 112, 9190(E) (2000).

    Article  ADS  Google Scholar 

  30. A. V. Potapov, L. A. Surin, V. A. Panfilov, and B. S. Dumesh, Opt. Spectrosc. 106, 655 (2009).

    Article  ADS  Google Scholar 

  31. K. Harada, K. Tanaka, T. Tanaka, et al., J. Chem. Phys. 117, 7041 (2002).

    Article  ADS  Google Scholar 

  32. J. Tang and A. R. W. McKellar, J. Chem. Phys. 119, 754 (2003).

    Article  ADS  Google Scholar 

  33. A. R. W. McKellar, J. Chem. Phys. 121, 6868 (2004).

    Article  ADS  Google Scholar 

  34. A. R. W. McKellar, J. Chem. Phys. 125, 164328 (2006).

    Article  ADS  Google Scholar 

  35. L. A. Surin, A. V. Potapov, B. S. Dumesh, et al., Phys. Rev. Lett. 101, 233401 (2008).

    Article  ADS  Google Scholar 

  36. P. L. Raston, Y. Xu, W. Jäger, et al., Phys. Chem. Chem. Phys. 12, 8260 (2010).

    Article  Google Scholar 

  37. S. P. Dempster, O. Sukhorukov, Q.-Y. Lei, and W. Jäger, J. Chem. Phys. 137, 174303 (2012).

    Article  ADS  Google Scholar 

  38. K. von Haeften, S. Rudolph, I. Simanovski, et al., Phys. Rev. B 73, 054502 (2006).

    Article  ADS  Google Scholar 

  39. T. Skrbi, S. Moroni, and S. Baroni, J. Phys. Chem. A 111, 7640 (2007).

    Article  Google Scholar 

  40. A. V. Potapov, V. A. Panfilov, L. A. Surin, and B. S. Dumesh, J. Exp. Theor. Phys. 111, 770 (2010).

    Article  ADS  Google Scholar 

  41. A. G. Suárez, J. A. Ramilowski, R. M. Benito, and D. Farrelly, Chem. Phys. Lett. 502, 14 (2011).

    Article  ADS  Google Scholar 

  42. V. L. Ginzburg and A. A. Sobyanin, JETP Lett. 15, 242 (1972).

    ADS  Google Scholar 

  43. P. Sindzingre, D. M. Ceperley, and M. L. Klein, Phys. Rev. Lett. 67, 1871 (1991).

    Article  ADS  Google Scholar 

  44. S. M. Apenko, Phys. Rev. B 60, 3052 (1999).

    Article  ADS  Google Scholar 

  45. G. Tejeda, J. M. Fernandez, S. Montero, et al., Phys. Rev. Lett. 92, 223401 (2004).

    Article  ADS  Google Scholar 

  46. K. Kuyanov-Prozument and A. F. Vilesov, Phys. Rev. Lett. 101, 205301 (2008).

    Article  ADS  Google Scholar 

  47. S. Grebenev, B. Sartakov, J. P. Toennies, and A. F. Vilesov, Science 289, 1532 (2000).

    Article  ADS  Google Scholar 

  48. S. Grebenev, E. Lugovoi, B. G. Sartakov, et al., Faraday Discuss. 118, 19 (2001).

    Article  ADS  Google Scholar 

  49. J. Tang and A. R. W. McKellar, J. Chem. Phys. 121, 3087 (2004).

    Article  ADS  Google Scholar 

  50. S. Grebenev, B. Sartakov, J. P. Toennies, and A. F. Vilesov, J. Chem. Phys. 132, 064501 (2010).

    Article  ADS  Google Scholar 

  51. D. T. Moore and R. E. Miller, J. Chem. Phys. 119, 4713 (2003).

    Article  ADS  Google Scholar 

  52. J. M. Michaud and W. Jäger, J. Chem. Phys. 129, 144311 (2008).

    Article  ADS  Google Scholar 

  53. J. Tang and A. R. W. McKellar, J. Chem. Phys. 123, 114314 (2005).

    Article  ADS  Google Scholar 

  54. F. Paesani, R. E. Zillich, Y. Kwon, and K. B. Whaley, J. Chem. Phys. 122, 181106 (2005).

    Article  ADS  Google Scholar 

  55. H. Li, R. J. Le Roy, P.-N. Roy, and A. R. W. McKellar, Phys. Rev. Lett. 105, 133401 (2010).

    Article  ADS  Google Scholar 

  56. A. R. W. McKellar, J. Chem. Phys. 108, 1811 (1998).

    Article  ADS  Google Scholar 

  57. I. Pak, L. A. Surin, B. S. Dumesh, et al., Chem. Phys. Lett. 304, 145 (1999).

    Article  ADS  Google Scholar 

  58. A. V. Potapov, L. A. Surin, V. A. Panfilov, et al., Astrophys. J. 703, 2108 (2009).

    Article  ADS  Google Scholar 

  59. M. Botti, S. De Palo, and A. R. W. McKellar, J. Chem. Phys. 122, 094314 (2005).

    Article  ADS  Google Scholar 

  60. P. L. Raston, W. Jäger, H. Li, et al., Phys. Rev. Lett. 108, 253402 (2012).

    Article  ADS  Google Scholar 

  61. F. Paesani, Y. Kwon, and K. B. Whaley, Phys. Rev. Lett. 94, 153401 (2005).

    Article  ADS  Google Scholar 

  62. Y. Xu, N. Blinov, W. Jäger, and P.-N. Roy, J. Chem. Phys. 124, 081101 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Surin.

Additional information

Original Russian Text © L.A. Surin, 2013, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 97, No. 1, pp. 61–71.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Surin, L.A. Nonclassical rotations of single molecules in small helium and hydrogen clusters: Manifestation of “microscopic superfluidity”. Jetp Lett. 97, 57–65 (2013). https://doi.org/10.1134/S0021364013010104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364013010104

Keywords

Navigation