Skip to main content
Log in

Distributed full switch as an ideal system area network for multiprocessor computers

  • Large Scale Systems Control
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We consider a way to build distributed full switches of an arbitrary size, consisting of small fixed-size switches and channel splitters. The distributed switch preserves the nonblocking and self-routing properties of a full switch and forms an ideal system area network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Eferences

  1. Gorbunov, V.S., Architecture of a Well-scalable Computing Cluster, Tr. mezhd. nauchn.-tekh. konf. “Superkomp’yuternye tekhnologii: razrabotka, programmirovanie, primenenie” (Proc. Int. Sci.-Tech. Conf. “Supercomputer Technology: Design, Programming, Application”), Divnomorskoe, 2010, vol. 1, pp. 48–54.

    Google Scholar 

  2. Gorbunov, V.S., Latsis, A.O., and Ivanov, A.N., On Building Supercomputers Based on PCI-Express Interface, Tr. mezhd. nauchn.-tekh. konf. “Superkomp’yuternye tekhnologii: razrabotka, programmirovanie, primenenie” (Proc. Int. Sci.-Tech. Conf. “Supercomputer Technology: Design, Programming, Application”), Divnomorskoe, 2010, vol. 1, pp. 55–57.

    Google Scholar 

  3. Karavai, M.F., Parkhomenko, P.P., and Podlazov, V.S., Combinatorial Methods for Constructing Bipartite Uniform Minimal Quasicomplete Graphs (Symmetrical Block Designs), Autom. Remote Control, 2009, vol. 70, no. 2, pp. 312–327.

    Article  MathSciNet  MATH  Google Scholar 

  4. Karavai, M.F. and Podlazov, V.S., An Invariant Extension Method for System Area Networks of Multicore Computational Systems. An Ideal System Network, Autom. Remote Control, 2010, vol. 71, no. 12, pp. 2644–2654.

    Article  MathSciNet  MATH  Google Scholar 

  5. Karavai, M.F., Parkhomenko, P.P., and Podlazov, V.S., Universal Network Structure for Real-time Faulttolerant Multi-processor Systems, Tr. konf. “Tekhnicheskie i programmnye sredstva sistem upravleniya, kontrolya i izmereniya” (Proc. Conf. “Hardware and Software Tools of Control and Measurement Systems”), Moscow, 2010, pp. 583–597, URL: http://cmm.ipu.ru/proc/index.html (accessed September 26, 2011).

    Google Scholar 

  6. Korzh, A.A., Makagon, D.V., Borodin, A.A., et. al., Domestic Communication Network 3D-torus with Globally Addressable Memory Support for Transpetaflops Performance Supercomputers, Tr. mezhd. nauchn. konf. “Parallel’nye vychislitel’nye tekhnologii” (Proc. Int. Sci. Conf. “Parallel Computing Technology”), Ufa, 2010, pp. 227–237.

    Google Scholar 

  7. Nikolaev, A.B. and Podlazov, V.S., Fault-tolerant Expansion of System Area Networks in Multiprocessor Computer Systems, Autom. Remote Control, 2008, vol. 69, no. 1, pp. 150–157.

    Article  MathSciNet  MATH  Google Scholar 

  8. Podlazov, V.S. and Sokolov, V.V., High Dimensionality Single-stage Switches for Multiprocessor and Multimachine Systems, Probl. Upravlen., 2006, no. 6, pp. 19–24.

    Google Scholar 

  9. Podlazov, V.S. and Sokolov, V.V., Circuitry of High Dimensionality Single-stage Switches, Datchiki Sist., 2006, no. 9, pp. 12–17.

    Google Scholar 

  10. Podlazov, V.S. and Sokolov, V.V., The Method for Homogeneous Expansion of System Area Network in Multiprocessor Computing Systems, Probl. Upravlen., 2007, no. 2, pp. 22–27.

    Google Scholar 

  11. Solokhina, T.V., Petrichkovitch, Ya.Ya., and Sheynin, Yu.E., SpaceWire Technology for Parallel Systems and On-Board Distributed Systems, Elektronika: NTB, 2007, no. 1, pp. 38–49.

    Google Scholar 

  12. Sheynin, Yu.E., Solokhina, T.V., and Petrichkovitch, Ya.Ya., SpaceWire Technology for Parallel Systems and Airborne Distributed Complexes, Elektronika: NTB, 2006, no. 5, pp. 64–75.

    Google Scholar 

  13. Hall, M., Combinatorial Theory, Waltham: Blaisdell, 1967. Translated under the title Kombinatorika, Moscow: Mir, 1970.

    Google Scholar 

  14. Alverson, R., Roweth, D., and Kaplan, L., The Gemini System Interconnect, 18th IEEE Symp. on High Performance Interconnects, 2009, pp. 83–87.

    Google Scholar 

  15. Arimilli, B., Arimilli, R., Chung, V., et al., The PERCS High-Performance Interconnect, 18th IEEE Symp. on High Performance Interconnects, 2009, pp. 75–82.

    Google Scholar 

  16. Arora, S., Leighton, F.T., and Maggs, B.M., On-line Algorithm for Path Selection in Nonblocking Network, SIAM J. Computing, 1996, vol. 25, no. 3, pp. 600–652.

    Article  MathSciNet  MATH  Google Scholar 

  17. Bercovich, E. and Bercovich, S., A Combinatorial Architecture for Instruction-level Parallelism, Microproces. Microsyst., 1998, vol. 32, pp. 23–31.

    Article  Google Scholar 

  18. Gu, Q.P. and Tamaki, H., Routing a Permutation in Hypercube by Two Sets of Edge-disjoint Paths, J. Parall. Distrib. Computing, 1997, vol. 44, no. 2, pp. 147–152.

    Article  MATH  Google Scholar 

  19. Ni, L.M. and McKinley, P.K., A Survey of Wormhole Routing Techniques in Direct Networks, IEEE Comput., 1993, vol. 26, no. 2, pp. 62–73.

    Article  Google Scholar 

  20. Guide to Myrinet-2000 Switches and Switch Networks, URL: http://www.myti.com/myrinet/m3switch/guide/ (accessed September 26, 2011).

  21. Kumar, A., Peh, L.-S., Kundu, P., and Jha, N.K., Toward Ideal On-Chip Communication Using Express Virtual Channels, IEEE Micro., 2008, Jan/Feb., pp. 80–90.

    Google Scholar 

  22. Okbin, L., Sangho, L., Seongyeol, K., and Ilyong, Ch., An Efficient Load Balancing Algorithm Employing a Symmetric Balanced Incomplete Block Designs, Lect. Notes Comput. Sci., 2004, vol. 3046, pp. 647–654.

    Article  Google Scholar 

  23. Pipenger, N., On Rearrangeable and Non-blocking Switching Networks, J. Comput. Syst. Sci., 1978, vol. 17, pp. 307–311.

    Article  Google Scholar 

  24. Rzymianowicz, L., Designing Efficient Network Interfaces for System Area Networks, URL: http://bibserv7.bib.uni-mannheim.de/madoc/volltexte/2002/54/pdf/541.pdf (accessed September 26, 2011).

  25. Scott, S., Abts, D., Kim, J., and Dally, W., The Black Widow High-radix Clos Network, Proc. 33rd Int. Symp. on Computer Architecture (ISCA’2006), 2006. URL: http://cva.stanford.edu/people/jjk12/isca06.pdf (accessed September 26, 2011).

    Google Scholar 

  26. Youngjoo, Ch., Changkyun, Ch., and Ilyong, Ch., An Efficient Conference Key Distribution System Based on Symmetric Balanced Incomplete Block Designs, Lect. Notes Comput. Sci., 2003, vol. 2657, pp. 147–154.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.F. Karavai, V.S. Podlazov, 2011, published in Upravlenie Bol’shimi Sistemami, 2011, No. 34, pp. 92–116.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karavai, M.F., Podlazov, V.S. Distributed full switch as an ideal system area network for multiprocessor computers. Autom Remote Control 74, 710–724 (2013). https://doi.org/10.1134/S0005117913040140

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117913040140

Keywords

Navigation