Skip to main content
Log in

Mechanical Asymmetry in the Embryonic Chick Heart During Looping

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Cardiac looping, which begins with ventral bending and rightward rotation of the primitive heart tube, is an essential morphogenetic event that occurs early in vertebrate development. The biophysical mechanism that drives this process is unknown. It has been speculated that increased stiffness along the dorsal side of the ventricle combined with an intrinsic cardiac force causes the heart to bend. There is no experimental support for this hypothesis, however, since little is known about regional mechanical properties of the heart during looping. We directly measured diastolic stiffness of the inner curvature (IC), outer curvature (OC), and dorsal–ventral sides of the stage 12 chick heart by microindentation. The IC of intact hearts was found to be significantly stiffer than either the OC or the sides, which were of similar stiffness. Isolated cardiac jelly, which is a thick, extracellular matrix compartment underlying the myocardium, was approximately an order of magnitude softer than intact hearts. The results of a computational model simulating the indentation experiments, combined with the stiffness measurements, suggests the regional variation in stiffness is due to the material properties of the myocardium. A second model shows that a relatively stiff IC may facilitate bending of the heart tube during looping. © 2003 Biomedical Engineering Society.

PAC2003: 8719Hh, 8719Rr, 8718La

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.-Hassan, E., W. F. Heinz, M. D. Antonik, N. P. D'Costa, S. Nagaswaran, C. A. Schoenenberger, and J. H. Hoh. Relative microelastic mapping of living cells by atomic force microscopy. Biophys. J. 74:1564–1578, 1998.

    PubMed  Google Scholar 

  2. Alford, P. W., and L. A. Taber. Regional epicardial strain in the embryonic chick heart during the early looping stages. J. Biomech. 36:1135–1141, 2003.

    Google Scholar 

  3. Butler, J. K. Experimental analysis of cardiac loop formation in the chick, MA thesis, University of Texas, 1952.

  4. Daily, B., E. L. Elson, and G. I. Zahalak. Cell poking. Determination of the elastic area compressibility modulus of the erythrocyte membrane. Biophys. J. 45:671–682, 1984.

    Google Scholar 

  5. DeHaan, R. L. Development of form in the embryonic heart. An experimental approach. Circulation 35:821–833, 1967.

    Google Scholar 

  6. Duszyk, M., B. Schwab III, G. I. Zahalak, H. Qian, and E. L. Elson. Cell poking: Quantitative analysis of indentation of thick viscoelastic layers. Biophys. J. 55:683–690, 1989.

    Google Scholar 

  7. Flynn, M. E., A. S. Pikalow, R. S. Kimmelman, and R. L. Searls. Mechanism of cervical flexure formation in the chick. Anat. Embryol. 184:411–420, 1991.

    Google Scholar 

  8. Hamburger, V., and H. L. Hamilton. Series of normal stages in the development of the chick embryo. J. Morphol. 88:49–92, 1951.

    Google Scholar 

  9. Harvey, R. P. Cardiac looping—An uneasy deal with laterality. Dev. Biol. 9:101–108, 1998.

    Google Scholar 

  10. Itasaki, N., H. Nakamura, H. Sumida, and M. Yasuda. Actin bundles on the right side in the caudal part of the heart tube play a role in dextrolooping in the embryonic chick heart. Anat. Embryol. 183:29–39, 1991.

    Google Scholar 

  11. Itasaki, N., H. Nakamura, and M. Yasuda. Changes in the arrangement of actin bundles during heart looping in the chick embryo. Anat. Embryol. 180:413–420, 1989.

    Google Scholar 

  12. Lacktis, J. W., and F. J. Manasek. An analysis of deformation during a normal morphogenic event. In: Morphogenesis and Malformation of the Cardiovascular System, edited by G. C. Rosenquist and D. Bergsma. New York: Alan R. Liss, 1978, pp. 205–227.

    Google Scholar 

  13. Lin, D. H., and F. C. Yin. Multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus. J. Biomech. Eng. 120:504–517, 1998.

    Google Scholar 

  14. Lin, Q., J. Schwarz, C. Bucana, and E. N. Olson. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276:1404–1407, 1997.

    Google Scholar 

  15. Linask, K. K., X. Yu, Y. Chen, and M. D. Han. Directionality of heart looping: Effects of Pitx2c misexpression on flectin asymmetry and midline structures. Dev. Biol. 246:407–417, 2002.

    Google Scholar 

  16. Manasek, F. J., M. B. Burnside, and R. E. Waterman. Myocardial cell shape changes as a mechanism of embryonic heart looping. Dev. Biol. 29:349–371, 1972.

    PubMed  Google Scholar 

  17. Manasek, F. J., R. R. Kulikowski, A. Nakamura, Q. Nguyehphuc, and J. W. Lacktis. Early heart development: A new model of cardiac morphogenesis. In: Growth of the Heart in Health and Disease, edited by Z. Radovan. New York: Raven, 1984, pp. 105–130.

    Google Scholar 

  18. Manasek, F. J., and R. G. Monroe. Early cardiac morphogenesis is independent of function. Dev. Biol. 27:584–588, 1972.

    Google Scholar 

  19. Manner, J. Cardiac looping in the chick embryo: A morphological review with special reference to terminological and biomechanical aspects of the looping process. Anat. Rec. 259:248–262, 2000.

    Google Scholar 

  20. Mercola, M. Embryological basis for cardiac left-right asymmetry. Semin. Cell Dev. Biol. 10:109–116, 1999.

    Google Scholar 

  21. Miller, C. E., M. A. Vanni, and B. B. Keller. Characterization of passive embryonic myocardium by quasilinear viscoelasticity theory. J. Biomech. 30:985–988, 1997.

    Google Scholar 

  22. Nakamura, A., and F. J. Manasek. Experimental studies of the shape and structure of isolated cardiac jelly. J. Embryol. Exp. Morphol. 43:167–183, 1978.

    Google Scholar 

  23. Radmacher, M. Measuring the elastic properties of biological samples with the AFM. IEEE Eng. Med. Biol. Mag. 16:47–57, 1997.

    Google Scholar 

  24. Riley, P. R., M. Gertsenstein, K. Dawson, and J. C. Cross. Early exclusion of handl-deficient cells from distinct regions of the left ventricular myocardium in chimeric mouse embryos. Dev. Biol. 227:156–168, 2000.

    Google Scholar 

  25. Shiraishi, I., T. Takamatsu, and S. Fujita. Three-dimensional observation with a confocal scanning laser microscope of fibronectin immunolabeling during cardiac looping in the chick embryo. Anat. Embryol. 191:183–189, 1995.

    Google Scholar 

  26. Srinivasan, R., and R. Perucchio. Finite element analysis of anisotropic nonlinear incompressible elastic solids by a mixed model. Int. J. Numer. Methods Eng. 37:3075–3092, 1994.

    Google Scholar 

  27. Taber, L. A. Biomechanics of growth, remodeling, and morphogenesis. Appl. Mech. Rev. 48:487–545, 1995.

    Google Scholar 

  28. Taber, L. A., N. Hu, T. Pexieder, E. B. Clark, and B. B. Keller. Residual strain in the ventricle of stages 16–24 chick embryos. Circ. Res. 72:455–462, 1993.

    Google Scholar 

  29. Taber, L. A., I. E. Lin, and E. B. Clark. Mechanics of cardiac looping. Dev. Dyn. 203:42–50, 1995.

    Google Scholar 

  30. Taber, L. A., and R. Perucchio. Modeling heart development. J. Elast. 61:165–197, 2000.

    Google Scholar 

  31. Taber, L. A., H. Sun, E. B. Clark, and B. B. Keller. Epicardial strains in embryonic chick ventricle at stages 16–24. Circ. Res. 75:896–903, 1994.

    Google Scholar 

  32. Thomas, T. H., H. Yamagishi, P. A. Overbeek, E. N. Olson, and D. Srivastava. The bHLH factors, dHAND and eHAND, specify pulmonary and systemic cardiac ventricles independent of left–right sidedness. Dev. Biol. 196:228–236, 1998.

    Google Scholar 

  33. Tsuda, T., N. Philp, M. H. Zile, and K. K. Linask. Left–right asymmetric localization of flectin in the extracellular matrix during heart looping. Dev. Biol. 173:39–50, 1996.

    Google Scholar 

  34. Voronov, D. A., and L. A. Taber. Cardiac looping in experimental conditions: Effects of extraembryonic forces. Dev. Dyn. 224:413–421, 2002.

    Google Scholar 

  35. Xie, W., and R. Perucchio. Multiscale finite element modeling of the trabeculated embryonic heart: Numerical evaluation of the constitutive relations for the trabeculated myocardium. Comput. Methods Biomech. Biomed. Eng. 4:231–248, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zamir, E.A., Srinivasan, V., Perucchio, R. et al. Mechanical Asymmetry in the Embryonic Chick Heart During Looping. Annals of Biomedical Engineering 31, 1327–1336 (2003). https://doi.org/10.1114/1.1623487

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1623487

Navigation