Skip to main content
Log in

Dynamics of evolutionary patterns of clades in a food web system model

  • Original Articles
  • Published:
Ecological Research

The evolutionary patterns of animal species clades in an evolving food web system were examined by computer simulation. In this system, each animal species fed on other species according to feeding preference. The food web system evolved via the appearance and extinction of species. The model succeeded in reproducing evolutionary patterns of diversity similar to those seen in the fossil record. This result indicates that the model reproduced the temporal changes of the rates of colonization and extinction of species in the system, which have been decided a priori in the previous stochastic models. In the food web system, the numbers of both predatory and prey species influenced the temporal diversity patterns in each clade in the system. The number of prey species fluctuated strongly, whereas the number of predatory species gradually increased with time. Therefore, temporal diversity patterns were influenced mainly by the number of predatory species. As a result of the gradual increase of the number of predatory species, it was difficult for each clade to maintain its species diversity for a long time. Slight changes of interspecific interaction can sometimes decide the destiny of a clade. When a clade is faced with extinction, if one predatory species of the clade becomes extinct and one or two prey species of the clade appear, the species diversity in the clade increases again. This result indicates that slight changes of interspecific interaction sometimes decide the destiny of a clade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez L. W., Alvarez W., Asaro F. & Michel H. V. (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction: experimental results and theoretical interpretation. Science 208: 1095–1108.

    CAS  Google Scholar 

  • Bambach R. K. (1983) Ecospace utilization and guilds in marine communities through the Phanerozoic. In: Biotic Interactions in Recent and Fossil Benthic Communities (eds M. J. S. Tevesz & P. L. McCall), pp. 719–746. Plenum, New York.

    Google Scholar 

  • Chin K. (1997) What Did Dinosaurs Eat? The Complete Dinosaur (eds J. O. Farlow & M. K. Brett-Surman) chapter 26. Indiana University Press, Bloomington, Indiana. http://www.indiana.edu/~iupress/books/0-253-33349-0ex2.html.

    Google Scholar 

  • Cohen J. E., Pimm S. L., Yodzis P. & Saldana J. (1993) Body size of animal predators and animal prey in food webs. Journal of Animal Ecology 62: 67–78.

    Google Scholar 

  • Elder W. P. (1989) Molluscan extinction patterns across the Cenomanian–Turonian boundary in the western interior of the United States. Paleobiology 15: 299–320.

    Google Scholar 

  • Erwin D. H. (1990) End-Permian. In: Palaeobiology, a Synthesis (eds D. G. E. Briggs & P. R. Crowther) pp. 187–194. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Futuyma D. J. (1986) Evolutionary Biology. Sinauer Associates, Inc, Sunderland, Massachusetts.

    Google Scholar 

  • Gardner M. R. & Ashby W. R. (1970) Connectance of large dynamic (cybernetic) systems: critical values for stability. Nature 228: 784.

    Google Scholar 

  • Gilpin M. E. (1994) Community-level competition: asymmetrical dominance. Proceedings of the National Academy of Science of the United States of America 91: 3252–3254.

    Google Scholar 

  • Gould S. J., Raup D. M., Sepkoski J. J. Jr, Schopf T. J. M. & Simberloff D. S. (1977) The shape of evolution: a comparison of real and random clades. Paleobiology 3: 23–40.

    Google Scholar 

  • Hallam A. (1984) Pre-Quaternary sea-level changes. Annual Review of Earth and Planetary Science 12: 205–243.

    Google Scholar 

  • Happel R. & Stadler P. F. (1998) The evolution of diversity in replicator networks. Journal of Theoretical Biology 195: 329–338.

    Google Scholar 

  • Hayami I. & Hosoda I. (1988) Fortipecten takahashii, a reclining pectinid from the pliocene of north Japan. Palaeontology 31: 419–444.

    Google Scholar 

  • Hirano H., Toshimitsu S., Matsumoto T. & Takahashi K. (1999) Bioevents and paleoenvironmental changes in Mid-Cretaceous. Fossil 66: 47–49 (in Japanese with English abstract).

    Google Scholar 

  • Holt R. D. (1977) Predation, apparent competition, and the structure of prey communities. Theoretical Population Biology 12: 197–229.

    Google Scholar 

  • Holtz T. R. J. (2003) Dinosaur predation. In: Predator–Prey Interactions in the Fossil Record (eds P. H. Kelley, M. Kowalewski & T. A. Hansen) pp. 325–340. Kluwer Academic/Plenum Publishers, New York.

    Google Scholar 

  • House M. R. (1989) Ammonoid extinction events. Philosophical Transactions of the Royal Society of London, Series B 325: 307–326.

    Google Scholar 

  • Jennings S., Pinnegar J. K., Polunin N. V. C. & Boon T. W. (2001) Weak cross-species relationships between body size and trophic level belie powerful size-based trophic structuring in fish communities. Journal of Animal Ecology 70: 934–944.

    Google Scholar 

  • Kelley P. H., Kowalewski M. & Hansen T. A. (2003) Predator–Prey Interactions in the Fossil Record. Kluwer Academic/Plenum Publishers, New York.

    Google Scholar 

  • Kennedy W. J. (1977) Ammonite evolution. In: Patterns of Evolution: as Illustrated by the Fossil Record (ed. A. Hallam) pp. 251–304. Elsevier, Amsterdam.

    Google Scholar 

  • Kolata G. B. (1975) Paleobiology: random events over geological time. Science 189: 625–626, 660.

    Google Scholar 

  • Larwood G. P. (1988) Extinction and Survival in the Fossil Record. Clarendon Press, Oxford.

    Google Scholar 

  • Maurer B. A. (1999) Untangling Ecological Complexity. The Macroscopic Perspective. University of Chicago Press, Chicago.

    Google Scholar 

  • May R. M. (1972) Will a large complex system be stable? Nature 238: 413–414.

    Google Scholar 

  • Nakajima T. (1995) Experimental evolution – a perspective based on evolutionary ecology of bacteria. Japanese Journal of Ecology 45: 43–56. (in Japanese with English abstract).

    Google Scholar 

  • Neubert M. G., Blumenshine S. C., Duplisea D. E., Jonsson T. & Rashleigh B. (2000) Body size and food web structure: testing the equiprobability assumption and the cascade model. Oecologia 123: 241–251.

    Google Scholar 

  • Pahl-Wostl C. (1997) Dynamic structure of a food web model: comparison with a food chain model. Ecological Modelling 100: 103–123.

    Google Scholar 

  • Raup D. M. (1992) Large-body impact and extinction in the Phanerozoic. Paleobiology 18: 80–88.

    Google Scholar 

  • Raup D. M., Gould S. J., Schopf T. J. M. & Simberloff D. S. (1973) Stochastic models of phylogeny and the evolution of diversity. Journal of Geology 81: 525–542.

    Google Scholar 

  • Raup D. M. & Stanley S. M. (1971) Principles of Paleontology. W. H. Freeman and Company, San Fransisco.

    Google Scholar 

  • Rosenzweig M. L. (1995) Species Diversity in Space and Time. Cambridge University Press, Cambridge.

    Google Scholar 

  • Sato T. & Tanabe K. (1998) Cretaceous plesiosaurs ate ammonites. Nature 394: 629–630.

    Google Scholar 

  • Schopf T. J. M. (1974) Permo-Triassic extinctions: relation to sea-floor spreading. Journal of Geology 82: 129–143.

    Google Scholar 

  • Sepkoski J. J. Jr (1979) A kinetic model of Phanerozoic taxonomic diversity. II. Early Phanerozoic families and multiple equilibria. Paleobiology 5: 222–251.

    Google Scholar 

  • Sepkoski J. J. Jr (1996) Competition in macroevolution: the double wedge revisited. In: Evolutionary Paleobiology (eds D. Jablonski, D. H. Erwin & J. H. Lipps), pp. 211–255. The University of Chicago Press, Chicago and London.

    Google Scholar 

  • Simberloff D. S. (1974) Permo-Triassic extinctions: effects of area on biotic equilibrium. Journal of Geology 82: 267–274.

    Google Scholar 

  • Stanley S. M., Signor P. W. I., Lidgard S. & Karr A. F. (1981) Natural clades differ from ‘random’ clades: simulations and analyses. Paleobiology 7: 115–127.

    Google Scholar 

  • Tokita K. & Yasutomi A. (1999) Mass extinction in a dynamical system of evolution with variable dimension. Physical Review E 60: 682–687.

    Google Scholar 

  • Tokita K. & Yasutomi A. (2003) Emergence of a complex, symbiotic and stable ecosystem in replicator equations with extinction and mutation. Theoretical Population Biology 63: 131–146.

    Google Scholar 

  • Valentine J. W. & Moores E. M. (1970) Plate-tectonic regulation of faunal diversity and sea level: a model. Nature 228: 657–659.

    Google Scholar 

  • Vermeij G. J. (1977) The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3: 245–258.

    Google Scholar 

  • Vermeij G. J. (1983) Traces and trends of predation, with special reference to bivalved animals. Palaeontology 26: 455–465.

    Google Scholar 

  • Vermeij G. J. (1987) Evolution and Escalation. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Vézina A. F. (1985) Empirical relationship between predator and prey size among terrestrial vertebrate predators. Oecologia 67: 555–565.

    Google Scholar 

  • Ward P. D. (1992) On Methuselah’s Trail. John Brockman Associates, New York.

    Google Scholar 

  • Warren P. H. & Lawton J. H. (1987) Invertebrate predator-prey body size relationship: an explanation for upper triangular food webs and patterns in food web structure? Oecologia 74: 231–235.

    Google Scholar 

  • Wignall P. B. & Hallam A. (1992) Anoxia as a cause of the Permian/Triassic mass extinction: facies evidence from northern Italy and the western United States. Palaeogeography, Palaeoclimatology, Palaeoecology 93: 21–46.

    Google Scholar 

  • Wignall P. B. & Twitchett R. J. (1996) Oceanic anoxia and the end Permian mass extinction. Science 272: 1155–1158.

    CAS  PubMed  Google Scholar 

  • Yoshida K. (2002) Long survival of ‘living fossils’ with low taxonomic diversities in an evolving food web. Paleobiology 28: 464–473.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuhiko Yoshida.

About this article

Cite this article

Yoshida, K. Dynamics of evolutionary patterns of clades in a food web system model. Ecol Res 18, 625–637 (2003). https://doi.org/10.1111/j.1440-1703.2003.00585.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1440-1703.2003.00585.x

Key words

Navigation