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Abstract
This study investigates the feasibility of utilizing high-density mobile Light Detection and Ranging (LiDAR) to measure 
urban streetscape features. The results suggest that mobile LiDAR’s density allows for much smaller voxels than in the pre-
vious research and the ability to measure small urban streetscape features in 3D. This includes street trees, light/lampposts, 
street furniture, traffic and commercial signage, building window proportions, awnings, and enclosed courtyard restaurants. 
Moreover, mobile LiDAR facilitated measuring and categorizing these streetscape features in walkable, downtown-like 
streetscape environments. The ability to compartmentalize such streetscapes into smaller cubic foot voxels to be quantita-
tively measured and categorized could supplement or replace conventional audit-based streetscape measurement. This study 
introduces new methods—based on voxel data analysis—to compile accurate descriptive statistics of streetscape features 
and how they can be represented in 3D.
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Introduction

Lane widths, shoulder widths, curbs, and paint markings are 
all measured and designed with precise dimensions. Much 
less attention is given to vertical and outer streetscape fea-
tures such as trees, benches, signage, and building frontage, 
to name a few. At the same time, there is over a century 
of literature regarding how such features are important for 
urban outcomes such as livability, for instance with writings 
from Sitte, Cullen, Appleyard, Rapoport, and Arnold (Sitte 
1889; Cullen 1971; Appleyard 1980; Rapoport 1990; Arnold 
1993). More recent research shows how these features may 
also impact road safety (Naderi 2003; Dumbaugh 2006; 
Wolf and Bratton 2006), economics (Ewing and Dumbaugh 
2009; Marshall et al. 2018) as well as public health out-
comes (Brownson et al. 2009; Purciel et al. 2009). Yet, the 
research regarding the role that streetscape features have on 
such outcomes remains somewhat conflicted, both in terms 

of the strength of the associations as well as the direction in 
some cases. These conflicts may be due to inconsistencies 
in measuring streetscape features.

Over the past decade, however, measuring-technique 
research for streetscape features has started to shift from 
audit-based methods (Ewing et al. 2005; Brownson et al. 
2009; Ewing and Clemente 2013) towards GIS/remote-
sensing methods (Purciel et  al. 2009; Yin and Shiode 
2014; Harvey et al. 2017; Yin et al. 2017). In order to fur-
ther reduce subjectivity, the most recent research is now 
beginning to use LiDAR (Light Detection and Ranging). 
Research by Golombek and Marshall, for instance, explored 
the streetscape mapping and streetscape feature detection/
extraction capabilities of publicly available aerial LiDAR 
data. More specifically, this research tested data derived 
from the national United States Geological Survey (USGS) 
3D elevation program, which included Quality Level (QL) 
2 LiDAR data (Golombek and Marshall 2019) as well as the 
four times denser QL1 LiDAR data (Golombek and Marshall 
2020). QL2 LiDAR has a point density of at least 2 points 
per square meter while QL1 LiDAR is at least 8 points per 
square meter. These studies designated entire streetscapes 
into 3D pixels known as ‘voxel’ grids. With the lower USGS 
QL2 standard, feature extraction was primarily limited to 
street trees and buildings, while the QL1 standard expanded 
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feature extraction to traffic lights, traffic signage, utility 
poles, walls, fences, as well as some larger street furniture.

These studies showed how LiDAR could be a valuable 
technology for providing accurate data in urban analysis and 
transportation-related research. Still, even the QL1 LiDAR 
point density standard had significant limits to what it could 
detect. For example, an urban QL1 dataset may collect only 
a few points on a street sign, which is enough to know 
the sign exists, but it neglects the overall dimensions and 
appearance of the sign. Smaller landscape features such as 
benches, garbage cans, and bike racks, to name a few, were 
not able to be detected with a QL1 dataset. Figure 1 depicts 
a comparison between QL1 and mobile LiDAR data, high-
lighting how some features are too small to be detected with 
QL1 LiDAR collection standards. Moreover, aerial LiDAR 
at these QL standards can detect top of buildings but not 
features in a peripheral view from the ground level such as 
windows, awnings, and building signage. Such features have 
also been shown to be important with respect to walkability.

Mobile, ground-based LiDAR, is dozens of times denser 
than publicly available QL1 aerial LiDAR data and is col-
lected from the vantage point of the street. Many tests and 
advances over the past fifteen years have developed mobile 
LiDAR scanning platforms into an acceptable and accurate 
survey-grade feature collection mechanism (Haala et al. 
2008; Williams et al. 2013). It seems that mobile LiDAR has 
the potential to quantitatively map various features within 
streetscapes, but this has not yet been studied.

The overarching goal of this study is to understand the 
role that mobile LiDAR, specifically its highly precise, 
accurate, and dense point-cloud, can play in quantitatively 
mapping and measuring features in an urban environment. 
This paper evaluates sample datasets collected with mobile 
LiDAR along several segments in a walkable town center-
type in Denver, Colorado, and proposes two methods to 
quantify streetscapes with 3D voxel grids/zones. First, we 
seek to present measuring tools utilizing technologically 
advanced mobile LiDAR. More specifically, we seek to 

Fig. 1   Comparison of QL1 (top) data to Mobile LiDAR (bottom) data for two similar intersections (for the top image, 1 = traffic light, 2 = light 
posts above traffic light, 3 = power lines)
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create volumetric descriptive statistics matrices for select 
streetscape features that have been cited as being affiliated 
with urban livability (perceptual qualities) and transporta-
tion-related outcomes (Ewing and Clemente 2013). Sec-
ondly, we create descriptive statistic matrices for critical 
urban streetscape features—such as street signage, traffic 
lights, and street furniture—that can be applied to urban and 
transportation research studies as well as inform municipal 
planning efforts.

This research has the potential to serve as an alternative 
or supplementary options to subjective human audit-based 
approaches for measuring streetscape features related to out-
comes such as walkability and livability. The next section 
overviews the existing literature. This is followed by an in-
depth review of our data and methods. Lastly, we present 
our findings and highlight the implications of these efforts.

Background

Over the past few decades, many researchers have developed 
quantifiable measuring techniques for streetscapes. Ewing 
et al. were among the first, and with Clemente and Handy, 
they developed comprehensive audit-based techniques and 
published these techniques in various manuals (Ewing 
et al. 2005; Ewing and Clemente 2013). Their measuring 
techniques were audit based and dependent on the auditors 
having the appropriate skillset with respect to the ability 
to visually assess and measure seemingly subjective quali-
ties (Brownson et al. 2009). In a related study, Ewing et al. 
measured twenty streetscape features over nearly 600 blocks 
in New York City related to pedestrian activity (Ewing et al. 
2016). Again, many of the features being detected—such 
as street furniture, window measurements and proportions, 
building heights, various landscape features, and outdoors 
dining—tended to be measured via visual, subjective audit-
based methods. Despite Ewing et al. checking for inter-rater 
reliability, these methods are time consuming and can still 
be subject to human error (Brownson et al. 2009). Brownson 
et al. (2009) evaluated twenty audit studies that evaluated 
built environments for health focused, physical activity rea-
sons, which again primarily focused on crude visual assess-
ments and not scientific, technology-based calculations.

Purciel et al. attempted to utilize basic GIS integration 
as an alternative to measuring some primary streetscape 
qualities. Purciel tested five of Ewing’s primary perceptual 
qualities—imageability enclosure, human scale, transpar-
ency, and complexity—and found wide a wide range of cor-
relation (0.28 to 0.89) between GIS and the field-observed 
measures (Purciel et al. 2009). Yin and Shiode attempted 
to use remotely sensed images to digitize 2D features, fol-
lowed by assessor GIS data in order to create 3D streetscape 
features, but they were limited to a few large features such as 

buildings and trees (Yin and Shiode 2014; Yin et al. 2017). 
These advancements are certainly important, though their 
accuracy is questionable when measuring the numerous 
small-scale streetscape features discussed by Ewing et al. 
over various studies.

Further advancing the use of spatial technologies with 
streetscape mapping, Harvey and Aultman-Hall addressed 
the streetscape measuring paradigm with respect to road 
safety outcomes while also incorporating aerial LiDAR 
(Harvey and Aultman-Hall 2015). They concluded that 
additional tree enclosure was significantly associated with a 
reduction in overall crashes. Harvey et al. also attempted to 
utilize spatial technologies to further address urban livability 
and concluded that GIS had limitations for collecting and/or 
addressing smaller features (Harvey et al. 2017).

Golombek and Marshall took potential urban streetscape 
measuring a step further and introduced voxel-based quanti-
tative streetscape feature extraction of USGS QL1 and QL2 
data, which creates descriptive statistics for how various 
features mentioned above are represented in a streetscape in 
3D. These studies are among the most accurate methods to 
date, but as also mentioned in the introduction, many smaller 
streetscape features were still not detectable, even with the 
higher-density QL1 standard (Golombek and Marshall 
2019, 2020). Also, ground-level vertical features such as 
windows, awnings, and building signage are important parts 
of streetscape studies but also not detectable with QL1 data.

Currently, research is limited on automated mobile 
LiDAR feature extraction methods, though most research 
on this topic occurred over the last few years and, fortu-
nately, continues to advance. Lehtomaki et al. utilized seg-
mentation, segment classification, and machine-learning 
classification to extract various street features from mobile 
LiDAR, including billboards, traffic poles, light posts, cars, 
and pedestrians (Lehtomäki et al. 2016). An issue with these 
methods is that the accuracy of feature classes ranged from 
66.7 to 94.3%, and the methods were only tested on 900m of 
roadway, which is not enough for it to be considered a viably 
tested method. Some researches such as El-Halawany and 
Lichti (El-Halawany et al. (2011), Zheng et al. (2017), and 
Wu et al. (2017) have solely focused on automated street-
pole extraction from mobile LiDAR. Their different methods 
of segmentation and clustering have led in some cases to a 
success rate of over 90% as well as a low false classifica-
tion rate. Their results are encouraging with respect to the 
viability of automated methods.

Rivero et al. devised a method focused on the intensity 
value of traffic signs and utilized segmentation and cluster-
ing methods to automatically extract signs (Riveiro et al. 
2016). Results successfully extracted around 80% of signs, 
though the authors appeared a little vague on the false-pos-
itive rate. Similar methods with some imagery and point 
cloud processing enhancements were used by Soilán et al. 
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(2016), which yielded slightly better results than Rivero 
et al.. The false-positive rate, however, appeared high, and 
like other similar examples, the test area was too small to 
be considered a thoroughly tested solution. Perhaps the 
most successful street sign extraction methods came from 
Gargoum et al. who reported a near 100% success rate over 
three sample areas (Gargoum et al. 2018). These areas dif-
fered significantly from our sample study areas, as they were 
primarily in rural parts of Alberta, Canada, in areas where 
the signs appeared to be isolated from other nearby features. 
We further discuss if and how these methods apply to our 
study in the methods section below.

For transportation-related research, it is important to 
decipher between LiDAR technology and platforms used 
for discrete feature collection and navigational purposes. 
At present, much research is being done with navigational 
LiDAR to support autonomous vehicle navigation advance-
ments. This form of LiDAR differs from discrete urban col-
lection in that it focuses on quick, real-time identification 
of features mainly pertaining to the roadway itself such as 
curbs, centerlines, other vehicles, and pedestrians (Gao et al. 
2018; Wang et al. 2019). Discrete collection LiDAR plat-
forms, on the other hand, focus on collecting and storing 
data/features for analysis of all areas within a streetscape or 
urban environment.

Highly accurate LiDAR-based methods have made 
inroads for providing data support for measuring 
streetscape features. Yet, recent aerial-based LiDAR-based 
research (Golombek and Marshall 2020) still has limita-
tions, especially for thoroughly collecting smaller fea-
tures such as signs and street furniture. Other limitations 
include the ability to measure ground-based vertical assets 
that some streetscape research considers such as build-
ing windows. Mobile LiDAR has potential to fill these 
gaps. In addition to our previous studies (Golombek and 
Marshall 2019, 2020), examples above from Lehtomaki 
et al., Wu et al., Gargoum et al., and Yang et al. all utilized 
voxel-based approaches to advance their stated methods 
for measuring and quantifying urban features. Automated 
classification methods are quickly evolving for large-scale/
area classification but are currently questionable regard-
ing their exactness. At present, manual classification of 
LiDAR data is viable and necessary for advancing urban 
street feature measuring and quantification. Though man-
ual classification requires human evaluation, like Ewing 
et al.’s audit-based methods, the LiDAR science com-
munity accepts manual classification of urban features as 
inherently accurate. The automated LiDAR research noted 
here and elsewhere use manually classified LiDAR data-
sets as control to test the validity of automated LiDAR 
algorithms and results. Also, it is important to note that 
human, audit-based methods may never be automated. 
Therefore, LiDAR classification of urban street features, 

even if done manually for the time being, is still potentially 
a significant advancement from the subjective methods of 
the past noted above.

Another possible limitation has to do with occulated 
data. Occluded data relate to LiDAR data not reaching 
all aspects of features, which we address here because 
occluded data can prevent features from being fully cap-
tured and therefore improperly measured. Regarding the 
features themselves in their unobstructed environments, 
some urban mobile LiDAR studies addressed occluded 
objects. Studies by Wu et  al. (2017) and Zheng et  al. 
(2017) constructed automated methods for extracting light 
poles from mobile data, addressed the occlusion issue, and 
found that complete objects were captured well over 90% 
of the time. Yang et al. (2015) utilized methods to extract 
multiple features and also concluded that complete fea-
tures were almost always captured despite potential occlu-
sions. Lin et al. validated mobile LiDAR for completed 
tree understory collection (Lin et al. 2014). This research 
suggests that feature occlusion with mobile LiDAR may 
be limited.

This paper seeks to use mobile-based LiDAR to detect 
and collect urban streetscape features. The next section 
describes our data and methods.

Data and methods

Overview

This study investigates mobile LiDAR’s dense ground-
level collection capabilities to assist the urban design/
analysis and transportation research community with two 
specific objectives.

The first objective is to provide descriptive statis-
tic matrices that may be used as alternatives to some of 
the audit-based methods for streetscape evaluation with 
more precise and accurate data. Since the research strand 
tends to revolve around the walkability aspects of urban 
streetscapes, we attempt to focus on the sidewalk areas of 
busy downtown-like contexts. For these streetscapes, we 
also evaluate mobile LiDAR’s ability to collect vertical 
building-face data that aerial LiDAR misses such as win-
dow proportions, awnings, and commercial signs.

Our second objective is to determine mobile LiDAR’s 
capability of fitting small streetscape such as street signs, 
traffic lights, and streetscape furniture with a precise, voxel 
matrix. Mobile LiDAR should be highly effective for this 
level of analysis because our voxel size can be refined 
more than the 5-ft vertical intervals used in the previous 
research (Golombek and Marshall 2019, 2020).



7High‑density mobile LiDAR for measuring urban streetscape features﻿	

Data/data collection

A Trimble MX9 was used to collect data for this study. The 
MX9 contains a spherical imaging system and three oblique 
view cameras. The MX9 contains Riegl VUX-1HA dual 
laser scanners that measure at 1000 kHz with the scanner 
mirror rotating at 250 revolutions per second and a field of 
view of 360°. A Real-Time-Kinematic (RTK) base station 
was set up for post-processing purposes on a nearby National 
Geodic Survey (NGS) monument set at a 1-s interval col-
lection rate. To confirm system accuracy, 13 ground control 
points (GCP) were established throughout the survey area 
that were no more than a half-mile apart from each other. 
Riegl’s collection platform uses an internal ‘multiple-time-
around’ procedure, which eliminates range ambiguities and 
helps remove data noise.

A four-mile segment was surveyed along Montview 
Boulevard in Denver, Colorado, between Colorado Boule-
vard and Havana Street. An additional nearby mile of road-
way through a mixed-use town center area along E. 29th 
Avenue in Denver was also collected. Each of these seg-
ments was traveled twice, once in each direction. Since many 
features of interest are concentrated on the sides of streets, 
doing so provides additional assurance for full collection 
of features.

POSPac ® was used to process telemetry of the Global 
Navigation Satellite System (GNSS) system, and we used 
RTK base station data to compute a corrected location of the 
vehicle path. Trimble Business Center (TBC) software was 
used to register/adjust overlapping data from the multiple 
runs. TBC also computed point cloud colorization using the 
registered images that were collected in-sync with the scans.

The combined runs were exported into LAS 1.4 format 
and 100-ft by 100-ft tiles. A control report was run against 
the GCPs that returned a root mean square error (RMSE) of 
0.06-ft/1.83-cm RMSE horizontal and a 0.122-ft/3.72-cm 
RMSE vertical. Point cloud density consistently averaged 
over 2000 points per square meter. Target range was well 
over 100m, which was well above the tallest feature in the 
streetscapes.

We also obtained parcel data from the City and County of 
Denver to determine the right-of-way (ROW) for the Mont-
view segment, as discussed below.

Methods

Creating streetscape sample areas

Similar to previous studies on quantitative streetscape meas-
uring (Golombek and Marshall 2019, 2020), we seek to 
develop quantitative statistics of streetscape features. This 
first required defining streetscape corridor segments. Recent 
streetscape mapping studies used a method to divide the 

pre-determined segments into Thiessen proximal polygons 
(Golombek and Marshall 2019, 2020). To create a Thiessen 
polygon layer, only a point feature class is required, and the 
output Thiessen polygon dataset is configured where each 
individual non-overlapping polygon is closest to its asso-
ciated input point. In the Montview dataset, we attempted 
to avoid segment cutoff at intersections since urban inter-
sections tend to be focal areas with high activity and many 
traffic-related features we prefer to keep together. By estab-
lishing the input point feature class with these intersection 
centroids, the segment breaks occur at a subtle location 
somewhere between these intersections. Figure 2 depicts the 
Thiessen-based streetscape segments we created for Mont-
view Boulevard using the ESRI ArcGIS® Thiessen polygon-
processing tool. The town-center streetscape polygons were 
created manually since the area of interest contained only a 
few small blocks. 

Additionally for the Montview section, we designed the 
streetscape sample areas to include the full street right-of-
way (ROW) that extend beyond the street curb. Extending 
the streetscape to include these peripheral views is impor-
tant since the majority of objects in urban roadways that fall 
within a road user’s peripheral view are located off the street 
itself. Therefore, we utilized Denver’s parcel data around 
the area of interest (AOI), merged the parcel data together, 
and used an ESRI ArcGIS® erase function that erased all 
non-streetscape ROW areas from our AOI. For the Mont-
view section, we created six streetscape polygon segments 
utilizing this method.

For the town center area, our approach was a little differ-
ent. Since the focus is more on streetscape features related to 
walkability, we simply digitized the areas between the curb 
and the building, enclosed with a crosswalk on each side. We 
identified six sample streetscape areas, as shown on Fig. 2, 
that we assess in this study.

Creating streetscape voxels for positional feature analysis

A key objective of this study is to incorporate voxels to 
quantity streetscape features and compile descriptive sta-
tistics. Breaking up a streetscape into voxels creates user-
specified height zones. A voxel is a pixel with a height or 
third-dimension component that can be useful for analyzing 
LiDAR data. Similar voxel methods are utilized in our pre-
vious street-feature voxel analysis studies (Golombek and 
Marshall 2019, 2020). In those papers, we determined that—
given aerial LiDAR point densities—a 3-ft by 3-ft horizontal 
and a 5-ft vertical setting was optimal and appropriate.

The accuracy and density of mobile LiDAR data, how-
ever, allows more flexibility in setting voxel parameters. 
Lehtomaki et al. used a fix voxel size of 20 cm3 for their 
street feature study. Yang et al. used a super-voxel approach 
where the voxel size was more focused on the feature itself, 
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though their voxel size always seemed greater than 0.5 m3. 
With over a thousand points per meter collected and utilizing 
US feet as the linear unit, we suggest setting each voxel to a 
single cubic foot, or 1-ft by 1-ft by 1-ft (x, y, z) dimension. 
We suggest this parameter because this dimension facilitates 
a simple calculating dimension and solid measuring basis 
for descriptive statistic metrics needed in the town center 
area. Ewing and Clemente often reference measuring fea-
tures from ground to certain levels, like eye-level visibility 
(Ewing and Clemente 2013). If a streetscape was, for exam-
ple, 500-ft long from crosswalk to crosswalk, 50-ft wide 
from storefront/building to curb, and 15-ft tall from ground 
to the above awnings, that streetscape quantitatively would 
total 375,000 cubic ft. If we calculate that 10 landscape trees 
fill 7500 single cubic-foot voxels, then we can estimate that 
trees comprise 2 percent of that streetscape.

LiDAR feature extraction methodology/classifying the data

For the four-mile Montview segment, the goal is to devise 
comprehensive descriptive statistics of streetscape features 
that can be applied to various urban transportation research 
studies. Other than for street sign extraction, the existing 
literature did not provide viable automated approaches. Even 
the street sign extraction methods yielded results well below 

100% (with a high degree of false positives and false nega-
tives) and have not been thoroughly tested at a macro scale. 
Gargoum et al. developed highly accurate automated street 
sign extraction results (Gargoum et al. 2018), though testing 
was primarily in rural areas where signs are isolated. Even if 
we utilize published automated methods, we would still have 
to manually assess the entire streetscape to check for false 
positives and false negatives. We also note, after previewing 
the Montview section, that many street signs are on the same 
horizontal poles as traffic lights, and some are small and/or 
obscured. For example in Fig. 3, a ‘No Parking’ sign may be 
on a light pole or power pole, but if it is not wider than the 
pole, the current automated methods would likely miss these 
signs. Additionally, the streetscape furniture and traffic lights 
require manual classification since we did not find adequate 
methods to automate extracting those features. An accuracy 
assessment on manually classified data is not necessary 
since many automated LiDAR classification experiments, 
including ones listed above, utilize manual classification for 
their control to assess accuracy. The accuracy specifications 
of the data are mentioned with the data collection platform 
specifications above.

Since our four-mile sample area is not overwhelmingly 
large, we utilized a manual classification approach with 
some automated LiDAR functions. The data’s control 

Fig. 2   Sample streetscapes for both Montview Boulevard and the town center area to the north



9High‑density mobile LiDAR for measuring urban streetscape features﻿	

reports, noted above, confirmed very high vertical and 
horizontal point-cloud accuracy. Also, automated LiDAR 
methods are often tested against manual classification 
for control, and we saw the same with automated urban 
mobile LiDAR feature extraction (Yang et al. 2015). We 
auto-filtered the data for ground points and also used an 
automated process to classify the remaining above-ground 
features together on a single LiDAR classification layer. 
We utilized Merrick & Company’s MARS® LiDAR pro-
cessing software, which has a Google Earth simultaneous 
location feature, to follow the streetscape point-cloud in 
MARS®. Paired with Google Earth on a separate screen, 
this allowed us to visually identify all street signs, traffic 
signals, and street furniture features (Fig. 4).

Once completed, we utilized a voxel application tool 
in MARS® that incorporates ground level and builds a 
user-specified voxel grid set to 1-ft by 1-ft by 1-ft (x, y, 
z) dimensions. This tool then applies the selected classi-
fied street furniture and street sign features into the voxel 
grids and exports a .dat Envi raster dataset, with each band 
within the .dat file representing a unique user-specified 
voxel height zone. Each grid cell that is populated also 
has a count value that specifies how many LiDAR points 
fell into that 3D voxel grid cell. For this study, we are not 
very concerned with the amount of data in each grid cell, 
but rather the simple fact that classified LAS points are 

inside that grid cell. Table 1 presents a sample descriptive 
statistics output.

For the town center area, our descriptive statistic zones 
for the walkable streets are different because we focus more 
on the walkable areas between the curb and the buildings. 
For this, we use a different approach because we are inter-
ested in collecting and measuring features affiliated with 
the buildings themselves such as the windows, awnings, and 
hanging signs. Our approach for collecting these objects dif-
fers because flat objects against buildings, such as windows, 
cannot be extracted like typical streetscape objects. Also, 
LiDAR often gets obstructed at windows and does not yield 
returns.

We extracted windows and awnings with mobile LiDAR 
with the help of a web-based solution by Orbit GT tech-
nologies. The Trimble MX9 platform collected panoramic 
images in conjunction with the LiDAR. Since the frames of 
the windows are well defined based on the void of LiDAR 
points within the frames, the Orbit LiDAR software has an 
interface that allows 3D feature tracing of the LiDAR data. 
For windows and awnings, we essentially created vertical 
polygons. After the windows and awnings were drawn in 
the 3D Orbit software interface, it exported the polygons 
into a Google KML file, which were then converted into 
a 3D shapefiles. Since the features are in 3D, calculating 
the area of these polygons must be captured in 3D as well. 

Fig. 3   Sample Features from Montview Boulevard  (Left—Example of multiple features (signs, traffic signal, pole) grouped together; Top 
Center—Sign on pole; Top Right—No Parking sign on Pole; Bottom Right—Hydrant and low landscape vegetation)
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Fig. 4   Matching spaces in Google StreetView and Mobile LiDAR dataset

Table 1   Descriptive statistics of streetscape features from high-density mobile LiDAR derived from voxel intervals for the town center district 
for compiling streetscape statistics

All area and volume units in Table 1 are in square feet and cubic feet
*Statistics are based on the ground-level views, up to the top of the first story or awning

Area ID Trees volume Trees points Street sign area Street 
sign 
points

Light/lamp area Light/
lamp 
point

Hanging 
sign area

Hang-
ing sign 
count

Street 
furniture 
area

Street 
furniture 
count

1 6124 10 126 5 252 9 138 7 412 19
2 7280 10 95 4 386 10 141 5 882 21
3 3022 3 121 5 91 5 89 3 339 12
4 2347 4 79 3 109 5 52 2 106 6
5 2847 6 60 3 276 6 94 3 135 4
6 7502 6 113 4 268 6 63 3 138 6

Area ID Streetscape area Building length Building 
face area*

Window 
count*

Window area* Window 
percentage*

Awning area* Enclosed open 
restaurant area

1 3652 281 3091 44 1373 44.4% 579 1007
2 3990 282 3102 47 1527 49.2% 473 636
3 2861 119 1309 20 343 26.2% 31 56
4 2926 118 1298 28 455 35.1% 56 165
5 6175 207 2278 58 1239 54.4% 1382 0
6 6488 207 2277 61 1385 60.8% 1361 120
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For this, we created an automated model in ESRI’s® Model 
Builder to iterate through each polygon feature and created 
a temporary Triangulated Irregular Network (TIN) for each 
window or awning polygon. We then ran surface information 
statistics on each polygon, utilizing the TIN as the surface, 
which enables the area of each polygon to be calculated. 
This process created area statistics for features like windows 
that can detected with LiDAR but not directly extracted and 
classified. As mentioned above, urban design researchers 
such as Ewing et al. take into account quantity of features 
at eye level for perceptual qualities. Utilizing data in the 
LiDAR viewer allows an analyst to calculate 2D face area 
of a building (from ground to the awning), and after the TIN 
process for windows is complete, area and proportion of 
windows were calculated.

These streets have a handful of fenced outdoor res-
taurants, which are also focal features for studying urban 
streetscapes. We used the LiDAR data to locate fenced areas 
and drew 2D polygons around these areas to estimate the 
square footage. Akin to the Montview sample, we processed 
the remaining streetscapes features in the town center—
including small landscape trees, light/lampposts, traffic 
signs, commercial signs (usually hanging in front of shops), 
and street furniture—via a single cubic-foot voxel grid. The 
result was then exported using .dat Envi raster dataset with 
each zone as its own raster band.

It is also important to address the topic of occluded data 
and shadowing. Since mobile LiDAR emits horizontally, we 
need to address if features are prone to being obstructed by 
other features such as moving vehicles, parked vehicles, road 
users, or other objects. Fortunately, this collection occurred 
in early May 2020 when a Denver mandated stay-at-home 
order due to the COVID-19 pandemic was in effect, which 
significantly reduced traffic. Some parts of Montview Boule-
vard do not allow street parking, while the areas that do 
were mostly clear of parked cars. The mobile LiDAR vehi-
cle operator was sure to always keep a safe distance from 
the few vehicles on the road. The town center’s shops were 
either closed, or the few open restaurants were take-out only. 
A few street-side parked cars were present, though they did 
not obstruct or shadow features to a high extent. The lit-
erature reviews suggested that features collected by mobile 
LiDAR are rarely occluded, and despite horizontal collection 
angles, features usually tend to be completely collected due 
to mobile LiDAR’s extreme point densities.

Additionally, it is important to address multiple features 
that may exist within a single voxel. This is most likely to 
occur when vegetation interferes with a manmade feature, 
such as a tree branch hanging over a sign or furniture object. 
In such cases, the sign is completely collected since the 
energy of the LiDAR pulse would deflect past the vegetation 
to the solid object and register as a multi-point pulse. If the 
pulse is deflected too far in another direction, the streetscape 

feature is still most likely to be completely collected given 
the over 2000 points per meter density described above. The 
occlusion discussion in the literature review highlights how 
feature occlusion with a mobile LiDAR platform of this 
nature is rare. Since streetscape features are processed inde-
pendently of each other, a voxel can be counted more than 
once. The one limiting factor is that if the vegetation is in 
the same voxel as a manmade feature, but behind the feature, 
then the vegetation may be occluded. Given the relative size 
of landscape vegetation, we expect an immaterial amount of 
data to be occluded due to this scenario.

For the Montview and non-ground-level  town center 
examples (see Table 1), we ran automated batch exports 
to convert the voxel height bands within each streetscape 
features’s .dat raster into 1-ft by 1-ft vector polygons. We 
did this for each feature class we are analyzing. We then 
built an automated process through ESRI’s® Model Builder 
to iterate through each individual (voxel height zone) vec-
tor polygon for each feature class. Model Builder was then 
programmed to perform a spatial join that sums all popu-
lated voxels for each feature in each voxel height zone and 
appends the data to each individual streetscape polygon, as 
noted in Fig. 2. The end result places all data into shapefile 
attribute tables that are cleaned up and exported into Excel 
tables. The Excel tables are the descriptive statistics that 
ultimately show how each streetscape is comprised of these 
features of interest. Tables 1 and 2 specifically break out the 
features discussed above into voxel height-based descriptive 
statistics, where each populated cell in these tables are cubic 
ft counts of that feature in those height zones.

Regarding street sign depth, the depth of most street signs 
are well below the 1-ft linear depth of a voxel. Therefore, 
the street sign figure can be read as simple 2D area cover-
age in Tables 1 and 2. With 1-ft cubic voxels, the height, 
width, and depth of each voxel is 1 ft each. Therefore, the 
sign statistics in Tables 1 and 2 can also be interpreted as 2D 
area coverage for each height zone since the length times the 
width (calculation of area) will always be multiplied times 
‘1.’ In rare occurrences where very thin objects such as sign 
plates that are not completely vertical (which did not exist 
in our dataset), these voxel methods may limit our ability 
to accurately calculate those features. However, they can 
be calculated by manually measuring them in the data pro-
cessing software, with the assistance of the high-resolution 
synchronous panoramic imagery.

Results

Table 1 shows sample results of the walkable streetscape 
areas. We specifically obtained volumetric streetscape data 
on trees, traffic signs, light/lampposts, hanging/commer-
cial signs, street furniture, awnings, and enclosed open-air 
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restaurants. We also obtained street level calculations of 
building coverage, window coverage, and window propor-
tions related to their buildings. Figure 5 shows an example of 
window extraction. Figure 6 shows an example of walkable 
streetscape features classified.

Table 2 displays results of smaller urban features such 
as street signs, traffic lights, and street furniture. We dis-
play processing results for street signs, traffic lights, and 
street furniture in single-foot elevation layer voxel zones in 
an effort to provide descriptive statistic matrices. Figure 7 
shows an example of single cubic-foot voxels covering a 
walkable streetscape.

For the town center area data presented in Table 1, we 
utilized six single-block segments shown in Fig. 2. We 

obtained these values by creating a similar descriptive statis-
tic breakdown used in previous street-feature voxel catego-
rizing studies (Golombek and Marshall 2019, 2020), which 
is similar to the Table 2 descriptive statistic structure. Since 
the results of Table 2 represent area/volume coverage at 
each voxel height zone, we added these figures together for 
each feature to determine total volumetric coverage, which 
is more in line with the sort of streetscape metrics (Purciel 
et al. 2009; Ewing and Handy 2009; Ewing et al. 2016) that 
we are trying to enhance. Whereas traditional methods may 
show crude tree counts and estimate their sizes or count 
windows and estimate their proportion, Table 1 shows that 
trees comprise between 2347 cubic ft and 7502 cubic ft of 
the 6 sample streetscapes.

Table 2   Descriptive statistics of streetscape features from high-density mobile LiDAR derived from voxel intervals for Montview Boulevard

All units are in cubic feet of coverage
Numeric figures after each abbreviation indicates voxel foot-height zone above ground
SS street signs, TS traffic signals, SF street furniture

Area ID SS_1 SS_2 SS_3 SS_4 SS_5 SS_6 SS_7 SS_8 TS_10 TS_11 TS_12 TS_13 TS_14 SF_1 SF_2 SF_3

1 0 3 5 5 8 10 42 95 26 25 25 24 17 63 54 46
2 2 12 11 11 11 21 102 242 31 25 27 22 37 215 191 109
3 0 3 0 0 0 23 127 253 64 81 87 101 57 332 334 256
4 0 3 9 21 33 44 121 238 101 94 96 93 58 254 266 269
5 3 13 12 22 26 23 117 248 113 111 109 112 77 803 661 468
6 0 2 6 22 22 18 114 244 61 60 58 53 20 305 445 301

Area ID SS_9 SS_10 SS_11 SS_12 SS_13 SS_14 SS_15 SS_16 TS_15 TS_16 TS_17 TS_18 TS_19 SF_4 SF_5 SF_6

1 116 102 102 95 52 16 18 16 0 0 0 16 34 31 25 23
2 289 292 292 267 105 20 15 13 38 16 15 7 2 67 24 19
3 308 298 283 231 110 68 51 56 37 50 44 28 16 191 129 134
4 260 222 227 193 92 31 30 44 36 5 30 83 113 193 138 96
5 287 265 206 137 38 12 6 22 41 24 23 89 170 394 354 267
6 306 279 188 107 11 2 0 21 15 29 101 106 161 210 94 105

Area ID SS_17 SS_18 SS_19 SS_20 SS_21 SS_22 SS_23 SS_24 TS_20 TS_21 TS_22 TS_23 TS_24 SF_7 SF_8 SF_9

1 10 8 31 33 43 21 17 12 63 74 47 25 7 12 11 0
2 14 13 2 0 0 0 0 0 0 0 0 0 0 9 4 4
3 63 51 38 12 5 13 13 9 4 0 0 0 0 113 99 40
4 20 18 91 89 69 5 5 0 165 128 69 18 4 103 13 4
5 96 83 113 98 112 48 21 13 209 182 125 40 2 262 295 289
6 56 86 77 48 21 18 0 0 102 64 3 0 0 79 94 67

Area ID Square footage per tile Total ind. signs Total traffic light units Total street 
furniture 
items

1 250,888 34 9 11
2 510,972 75 10 32
3 521,185 91 17 37
4 508,772 95 26 42
5 601,701 107 35 89
6 485,807 101 24 38
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This statistic can impact the perceptual quality of human 
scale. Human scale refers to size of physical elements that 
match size and proportions of humans (Ewing and Clemente 
2013). According to Arnold (1993), increased canopy are 
preferred among pedestrians since they mitigate intimidation 
caused by large surrounding buildings and wide streets and 
these LiDAR-based methods now allow for total physical 
coverage to be counted, as opposed to crude feature counts 
done previously. Increased coverage of street furniture and 
window coverage also affect human scale (Ewing and Clem-
ente 2013). Regarding window coverage, Table 1 also shows 
that window coverage range from 26 to 61 percent for the 
sample streetscapes. This is important to note since previous 
audit-based evaluations called for human auditors to simply 
visually estimate proportions, which according to Brownson 
et al. (2009) is prone to human error.

As another example, areas 5 and 6 are very similar in 
size and shape and have the same number of trees. Audit-
based evaluations simply count trees. Yet, area 6 has nearly 
three times the amount of actual tree coverage per Table 1. 
Though this research does not assess reasons for these dif-
ferences, some examples for this occurrence may include 
tree age. Another possibility is that the taller trees may be 

positioned to receive more sunlight. The LiDAR collection 
density, accuracy, project specs, and the project control 
report clearly depict that these discrepancies were not caused 
by errors or lack of capabilities from the mobile LiDAR 
collection effort. Mobile LiDAR’s high energy and dense, 
emission of over 2000 points per meter limits occlusion 
and penetrates tree canopies. In fact, the existing mobile 
LiDAR studies relating to street features and tree collec-
tion show very limited (if any) occlusion from high-density 
mobile LiDAR (Yang et al. 2015; Lin et al. 2014; Wu et al. 
2017; Zheng et al. 2017). Therefore, mobile LiDAR’s results 
clearly show how volumetric calculations are more justifi-
able than simple crude counts of features.

Table 2 includes the results of our Montview Boulevard 
analysis. In Table 2, the numbers next to each abbreviation 
designate the lower part of the height zone, so height for 
example SS_1 (SS = Street Signs) would be from 1-ft above 
ground to 2-ft above ground. TS (TS = Traffic Signal) starts 
at TS_10, where the first height zones where traffic signals 
are present are around 10 ft above ground, since TS_10 is 
the voxel height zone from 10 ft to 11 ft. Street Furniture 
(SF) starts at ground, though we eliminate the zero to 1-ft 
zone because many features at this level may be confused 

Fig. 5   Example of collecting windows off imagery and LiDAR point cloud (in the top photo, a snapshot, taken while classification was in pro-
gress, shows classified or collected windows on the right and not-yet classified windows on the left)



14	 Y. Golombek, W. Marshall 

with misclassified ground points. Street furniture included 
benches, garbage cans, bus stops, permanent non-traffic 
signs, permanent décor, and any miscellaneous features 
that would not fit into any other common streetscape feature 
class.

For the Table 2 Montview sample, we see where signs, 
signals, and street furniture are most prominent. For street 
signs, it appears that most activity is between 8 and 12 ft, 
since before 8 ft and after 12 ft, these zones show much less 
activity. We also see more than a doubling of street sign 
face coverage between 7 and 8 ft, and this statistic more 
than halves after 12 ft. Traffic signals do not populate voxels 
until 10 ft above ground. As the socioeconomics change, 
so do the traffic signals. Montview Boulevard begins in a 
highly tree-covered, wealthy neighborhood. The traffic sig-
nals appear lower because many of them are flashing signals 
on the street sides. Further east, Montview transitions from 
Denver to Aurora into a lower socioeconomic neighbor-
hood. Here, we see more traffic signals, which appear to be 
higher above ground. Height above ground is important to 
consider as it relates to streetscape complexity. Rapoport 

(1990) explains that complexity is related to noticeable dif-
ferences to which a viewer is exposed per unit of time. Both 
pedestrians and motorists need features adequately placed 
in space to receive information at perceivable rates (Ewing 
and Clemente 2013). Additionally, past research shows how 
placement of these features among others affect urban trans-
portation safety (Naderi 2003; Dumbaugh 2006; Wolf and 
Bratton 2006). Table 2 highlights additional examples of 
accurate street feature measurements that, if applied to dis-
cussed urban transportation outcome research, could reshape 
results.

Conclusion

Mobile LiDAR data have proven to be useful for measuring 
urban streetscape features, especially walkable streetscapes, 
and infrastructure components that enclose a streetscape. 
To our knowledge, our results provide the most accurate 
volumetric calculations of various features in the literature 
to date. Some examples include street signage, ranging from 

Fig. 6   Sample of feature classification in the Town Center streetscape (trees are green, traffic signage pink, lampposts red, street furniture yel-
low, commercial sign blue, parked car white)
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60 cubic ft to 126 cubic ft, and hanging commercial signs, 
ranging from 52 cubic ft to 141 cubic ft of total coverage 
throughout individual streetscape segments. Our results also 
provide examples of actual window areas, and we see signifi-
cant discrepancies between window area as a proportion or 
percentage of the building’s street level face, ranging from 
26% to over 60%. Enclosed open-air restaurants range from 
zero to over 1000 square ft. This level of descriptive statis-
tics provides a unique niche for mobile LiDAR that cannot 
be obtained with publicly available aerial LiDAR.

For urban streets, our results also show that mobile 
LiDAR enables access to refined descriptive statistics of 
critical, smaller features such as street furniture, traffic signs, 
and traffic lights. The single cubic-foot voxel zones provided 
us with the ability to, for instance, identify that street signs 
appear most prevalent between 8 and 12 ft; we also see street 
furniture most prevalent at lower height zones and topping 
off around 10 ft.

We believe mobile LiDAR analytics has the potential 
to quantitatively supplement and/or replace time consum-
ing, and likely subjective, audit-based streetscape meas-
ures. We also believe the methods discussed in this study 

allow for such quantitative assessments to be conducted 
far more efficiently than similar physical, in-person assess-
ments. For instance, the town center area represents walk-
able streets that are similar to areas analyzed by Ewing 
et  al.  (2005). The audit-based measuring techniques 
utilized by Ewing, along with many of the audit-based 
measuring techniques evaluated by Brownson et al. (2009), 
are commonly dedicated to street walkability research. 
Whereas Cullin understood how urban features were 
important to desirability, making them feel like outdoor 
rooms (Cullen 1971), Ewing’s group consolidated urban 
features into perceptual quality groups. Specifically, they 
considered factors such as enclosure, complexity, human 
scale, transparency, and imageability (Ewing and Clem-
ente 2013) by visually assessing items. An example from 
Table 1 relating to perceptual qualities are street trees 
measures that could be used to calculate enclosure (Ewing 
and Clemente 2013). Street lamps/lights, street trees, and 
street furniture are factors of measuring human scale and 
complexity (Ewing and Clemente 2013). Window area 
and proportions are factors of measuring human scale and 
transparency (Ewing and Clemente 2013). Hanging signs 

Fig. 7   Example of single cubic ft voxels covering walkable streetscape area
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and fenced courtyard restaurants are measures of image-
ability (Ewing and Clemente 2013). We can now far more 
objectively quantify these perceptual qualities with mobile 
LiDAR.

The Ewing et al. (2016) audit-based study mentioned 
above concludes that only three out of twenty streetscape 
features, many of which were evaluated above, have sig-
nificant positive correlations with pedestrian counts. We 
argue throughout this study that audit-based methods are 
subjective while modern feature measuring/surveying 
technologies, such as LiDAR, have advanced to provide 
significantly more accurate feature measuring. The same 
can be said for many of the twenty audit-based studies that 
Brownson et al. (2009) surveyed. It is very possible that 
utilizing mobile LiDAR may lead to different conclusions 
than Ewing et al.’s example.

Moreover, this research can also contribute to urban traf-
fic outcome studies, as various researchers remain conflicted 
regarding the roles that street trees and other streetscape 
features have on road safety outcomes. Marshall et al., for 
instance, recently completed a study suggesting that street 
trees are associated with better road safety outcomes, which 
runs counter to conventional wisdom (Marshall et al. 2018). 
Our results have potential to quantify streetscapes, which can 
supplement the audit-based efforts and help resolve long-
standing inconsistencies over what features actually lead to 
better road safety outcomes.

It is important to point out some potential limitations for 
a larger scale study of this nature. Most importantly, this 
study utilized manual classification methods. If this study 
were performed on a larger scale, similar to the hundreds 
of blocks that cited researchers have performed their audit-
based or GIS-based methods, it will be important to improve 
automated LiDAR classification methods. Per our discussion 
above, the automated methods appear to be improving, with 
significant advancements over the past few years. Still, some 
features still have no automated methods and may require 
manual classification. Regardless, any automated improve-
ment will significantly reduce the amount of time it takes to 
properly classify data, even though large-scale, multi-feature 
manual classification is currently common practice and eco-
nomically viable in some situations.

We believe our study presents a more comprehensive and 
accurate approach to quantifying an urban streetscape than 
can be found in the current literature. It is important to point 
out that we used a 1 cubic-ft voxel as our measuring unit, 
which may slightly overestimate the actual size of some fea-
tures such as signs, poles, or branches that slightly protrude 
into the feature’s outer-most voxel. Zheng et al. mention that 
these fixed sizes are usually efficient for measuring features, 
but the set voxel size can influence results. We chose to use 
the 1 cubic ft because of the simplicity involved in calculat-
ing statistics with a cubic unit of ‘1.’ It was also smaller than 

had been used in the previous research. Per the point-cloud 
density and accuracy standards listed above, voxel sizes 
can be adjusted to even smaller sizes for perhaps improved 
results.

Additionally, shadowing due to parked vehicles, or simi-
lar obstructions, would be a limitation. As mentioned, the 
COVID-19 pandemic heavily reduced parked vehicles. 
Though city coordination, or perhaps coordination with 
street-sweeping days, may be necessary to limit parked vehi-
cles when collecting data.

This research shows mobile LiDAR to be a valuable tool 
for quantitatively mapping streetscape features in 3D. Our 
methods will hopefully provide transportation and urban 
design researchers valuable tools to help assess the roles 
that various streetscape features play in urban analysis and 
urban transportation outcomes.
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