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Abstract
Despite growing attention to cyber risks in research and practice, quantitative cyber 
risk assessments remain limited, mainly due to a lack of reliable data. This analysis 
leverages sparse historical data to quantify the financial impact of cyber incidents 
at the enterprise level. For this purpose, an operational risk database—which has 
not been previously used in cyber research—was examined to model and predict the 
likelihood, severity and time dependence of a company’s cyber risk exposure. The 
proposed model can predict a negative time correlation, indicating that individual 
cyber exposure is increasing if no cyber loss has been reported in previous years, 
and vice versa. The results suggest that the probability of a cyber incident correlates 
with the subindustry, with the insurance sector being particularly exposed. The pre-
dicted financial losses from a cyber incident are less extreme than cited in recent 
investigations. The study confirms that cyber risks are heavy-tailed, jeopardising 
business operations and profitability.

Keywords Cyber risk modelling · Cyber risk management · Cyber insurance · Vine 
copula · Sparse time series

Introduction

Cyber risks are one of the greatest threats of the twenty-first century (WEF 2021). 
Originally arising from the use of information technology (IT), cyber risks have 
since increased in both number and financial impact, especially due to rapidly pro-
gressing digitisation, worldwide interconnection and the introduction of new digital 
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products and services (Njegomir and Marović 2012; Rakes et  al. 2012; Aldasoro 
et al. 2020). The cost of cyber incidents is estimated at more than USD 1 trillion 
(McAfee 2020) globally. Cyber incidents not only jeopardise private customers but 
also pose new challenges for companies and organisations (Njegomir and Marović 
2012; Choudhry 2014; Bendovschi 2015; Wrede et al. 2018; Aldasoro et al. 2020). 
Despite the high awareness of cyber risk among corporate decision makers (Smidt 
and Botzen 2018) and insurance companies (Pooser et  al. 2018), enterprise risk 
management (ERM) still neglects the associated risks, with some industries and 
firms even adopting a passive stance (Ashby et al. 2018; Pooser et al. 2018).

Effective cyber risk management should be comprehensively incorporated into 
ERM rather than analysed in an isolated manner, such as exclusively in IT depart-
ments (Marotta and McShane 2018; Shetty et al. 2018; Poyraz et al. 2020). Further-
more, there is evidence that cyber risk management processes are generally qualita-
tive and are missing quantitative findings (Palsson et al. 2020). The usual method to 
quantify cyber risk is through an analysis of historical cyber incidents from verifi-
able sources and the performance of empirical, statistical and actuarial examinations 
to determine the financial impact and likelihood of a cyber incident in a specific 
organisation (Smidt and Botzen 2018; Palsson et al. 2020). However, the lack of data 
restrains the quality of such assessments and constitutes the main research gap in the 
cyber risk literature (Eling and Schnell 2016; Marotta et al. 2017; Boyer 2020).

To address this, we quantitatively assess the financial impact of cyber risks at the 
enterprise level using sparse historical data. Our analysis is based on the Öffentli-
che Schadenfälle OpRisk (ÖffSchOR) database—an operational risk (OpRisk) data-
base on publicly disclosed loss events in the European financial sector—which has 
not been adapted to cyber risk research. We apply advanced modelling techniques 
suggested by Shi and Yang (2018), Eling and Wirfs (2019) and Fang et al. (2021) 
to predict the likelihood and loss exposure of a potential cyber incident. We spe-
cifically use statistical dependence, modelled by a D-vine copula structure, to cope 
with the sparsity of events in a multivariate time series setting. In doing so, we pro-
vide new empirical evidence and quantitative results on actual cyber risk losses at 
the company level. Our findings suggest that cyber risks are less severe than recent 
studies claim and that subindustries must be separately modelled. Additionally, our 
results support the insight that cyber risks are heavy tailed, with an extreme cyber 
incident as a worst-case scenario that would seriously harm or default a company 
(Eling and Wirfs 2019; Wheatley et al. 2021).

The results of this study provide one of the first quantitative insights on the nature 
of cyber risks and introduce a new dataset to cyber research. The outlined methodol-
ogy allows researchers and practitioners, in particular cyber insurers, to assess cyber 
risks despite the lack of larger datasets and to combine with existing pricing tools in 
order to evaluate risk-based premiums (Nurse et al. 2020; Cremer et al. 2022). Our 
study, thus, contributes to the limited research available on the empirical quantifica-
tion of cyber risks and to a better understanding within the field.

The remainder of this paper is structured as follows. The next section provides a 
summary of the most relevant literature. Then, we introduce the dataset and meth-
odology. The fourth section presents the results of our analysis. The final section 
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concludes with a discussion of the findings and limitations of the study as well as 
future research possibilities.

Literature review

Compared to the prevailing research on operational risk modelling (see e.g. Cox 
2012; MacKenzie 2014), cyber risk analyses are still very limited (Eling 2020).1 
This lack of research is often linked to the limited availability of cyber loss data 
(Maillart and Sornette 2010; Biener et  al. 2015), which is typically not disclosed 
by organisations in an effort to avoid reputational damage (Giudici and Raffinetti 
2020). Despite several public and private initiatives to form databases (see the next 
section), companies have little incentive to share loss information in a public or 
consortium repository (Palsson et al. 2020). Initiatives such as the introduction of 
new reporting requirements for cyber incidents and data breaches—in the U.S. by 
the National Conference of State Legislatures (NCSL 2016) and in Europe by the 
European Union (EU 2016)—might improve modelling techniques (Eling and Wirfs 
2019) but are still incapable of delivering new insights. Further, the introduction 
of individual cyber risk definitions leads to a maze of terms rather than a compre-
hensive and unified terminology and understanding of cyber risks (Zängerle and 
Schiereck 2022).

The lack of cyber risk data has also been addressed in recent publications. In 
particular, Cremer et  al. (2022) conduct a comprehensive and systematic review 
of cyber data availability, identifying only 79 datasets from a preliminary 5,219 
peer-reviewed cyber studies. Furthermore, most of these databases focus on techni-
cal cybersecurity aspects, such as intrusion detection and machine learning, with 
only a fraction of available datasets on cyber risks. The authors find that the lack of 
available data on cyber risks is a serious problem for stakeholders that undermines 
collective efforts to better manage these risks. This interpretation is supported by 
Romanosky et al. (2019), who show that (cyber) insurers in the U.S. have no historic 
or credible data to assess the loss expectation of cyber insurance coverages.

Due to the scarcity of cyber loss information, data breaches, mainly in the U.S., 
have received the most attention in empirical research (see e.g. Maillart and Sornette 
2010; Edwards et al. 2016; Wheatley et al. 2016; Eling and Loperfido 2017; Eling 
2018; Xu et al. 2018; Wheatley et al. 2021). Attempts have also been made to assess 
the monetary impact of data breaches (see e.g. Layton and Watters 2014; Roma-
nosky 2016; Ruan 2017; Poyraz et al. 2020). However, as addressed by Woods and 
Böhme (2021), these studies have produced contradictory results, depending on the 
dataset and methodology applied. Furthermore, Eling and Wirfs (2019) found that 
data breaches account for just 25% of all cyber events, and the estimated distribu-
tion of breached records does not align with that of the actual financial cost of cyber 

1 For a comprehensive review and the status quo of cyber risk research, we refer to Eling and Schnell 
(2016), Marotta et al. (2017), Eling (2020) and Woods and Böhme (2021).
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incidents. To this day, only a few studies have assessed the financial impact of cyber 
incidents in a comprehensive way.

Biener et al. (2015) analyse cyber losses from the SAS operational loss database 
and emphasise the distinct characteristics of cyber risks, including the lack of data, 
information asymmetries and highly interrelated losses. However, the authors focus 
on insurability rather than the modelling and prediction of cyber losses. Romanosky 
(2016) provides the first quantitative insights from actual loss information based on 
the Advisen dataset but concentrates on descriptive statistics.2 Later, Palsson et al. 
(2020) use the same database to model the financial cost of different cyber event 
types by applying a random forest algorithm. Although the data are not sufficiently 
detailed to construct a predictive model with high accuracy, the researchers identify 
relevant factors affecting the expenses of such incidents. Similar to our examina-
tion, Eling and Wirfs (2019) analyse the actual costs of cyber incidents from the 
SAS loss database with statistical and actuarial methods. By applying the peaks-
over-threshold (POT) method from extreme value theory (EVT), they find that cyber 
risks are distinct from other risk categories and argue that researchers must distin-
guish between ‘cyber risks of daily life’ and ‘extreme cyber risks’. In addition, they 
present a simulation study for practical application. We apply techniques similar to 
those of Eling and Wirfs (2019), who focus on monthly aggregated observations 
from all entities available, treated as one sample from a single distribution. We, 
however, utilise enterprise-level sparse time series data from a database that has not 
yet been used in the context of cyber risk modelling.

A second research stream focusing on the modelling of dependence structures 
has recently emerged (Eling 2020). In particular, the application of copula the-
ory is widely accepted due to the ability to use any marginal distribution, which 
is essential for diverse cyber risk classes, and to address non-linear dependencies 
(see e.g. Böhme and Kataria 2006; Herath and Herath 2011; Mukhopadhyay et al. 
2013). Further studies have extended these approaches to multivariate settings using 
vine copulas (see e.g. Joe 1997; Bedford and Cooke 2002; Kurowicka and Cooke 
2006; Aas et al. 2009), which generate a multivariate copula based on iterative and 
bivariate pairwise copula constructions (PCC). The D-vine, a distinct vine copula, 
is particularly structured and simple to interpret in the time series context (Zhao 
et al. 2020). For example, Peng et al. (2016) use honeypot data to model multivariate 
and extreme cyber risks with marked point processes and vine copulas, later pro-
gressing with a vine copula GARCH model (Peng et al. 2018). Shi and Yang (2018) 
analyse the temporal dependence in longitudinal data by a D-vine copula. Xu et al. 
(2018) model the interarrival times of data breaches by ARMA-GARCH and joint 
density with copula. Eling and Jung (2018) apply the Privacy Rights Clearinghouse 
(PRC) dataset and model the cross-sectional dependence of data breaches. They find 
that vine structures exhibit a better fit than simple elliptical or Archimedean copu-
las. Fang et al. (2021) also study the same dataset, but in a multivariate time series 
setting with sparse observations at the enterprise level. Therefore, they propose 

2 The author uses a logistic regression model to analyse the actual costs of data breaches only. A new 
approach for assessing the monetary impact of mega data breaches is suggested by Poyraz et al. (2020).
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a D-vine copula to model the serial trend. We adopt this framework to model the 
financial impact of actual cyber incidents rather than data breaches alone.

The current emergence of network models also offers a new, more appealing path 
for cyber risk modelling (see e.g. Fahrenwaldt et al. 2018; Jevtić and Lanchier 2020; 
Wu et al. 2021). However, these advanced predictive models are currently limited 
to simulation studies, as applying such methods to real-world data requires a vast 
amount of unfiltered data points in order to provide accurate predictions (Tavabi 
et al. 2020). These techniques are consequently not applicable to our setting due to 
the lack of sufficient data.

Data and methodology

In addition to the fact that information on cyber risks is typically not publicly avail-
able, the systematic collection of known cyber incidents poses further challenges 
(Eling and Wirfs 2016b). As Romanosky (2016) illustrates, only a fraction of actual 
cyber incidents is recorded in associated loss databases. A limited number of cyber 
databases (see Table 1) do exist, mainly established by private and public companies 
and consortia. Nevertheless, it is challenging to gain access to them, and there is no 
standard practice in the recording and collection of cyber incidents.

OpRisk databases from the U.S. have been primarily used to model cyber risks 
in the existing literature, including Advisen (see e.g. Romanosky 2016; Kesan and 
Zhang 2019; McShane and Nguyen 2020; Palsson et al. 2020) and the SAS OpRisk 
database (see e.g. Biener et  al. 2015; Eling and Wirfs 2016a, 2019). Further-
more, other organisations and consortia collaborate and share data on operational 
and cyber risks to build systematic databases. Specific databases focusing on data 
breaches in the U.S. (e.g. Privacy Rights Clearinghouse) and private initiatives (e.g. 
Hackmaggedon) have emerged. However, only some of the above-mentioned ini-
tiatives provide information on the economic loss of reported cyber incidents. For 
our analyses, we use the German Öffentliche Schadenfälle OpRisk database due 
to the following reasons. First, the database is rather small, which emphasises the 
introduced motivation of sparse cyber risk modelling. Second, ÖffSchOR focuses 
on OpRisk losses from the financial sector in Europe, providing some of the first 
insights both from this important industry in the European Union and from Europe 
overall. In particular, the size of the recorded losses and relative number of cyber 
incidents are comparable to previous studies (see e.g. Eling and Wirfs 2019). Third, 
ÖffSchOR provided free access to the database to conduct this research project and 
to promote quantitative cyber research. Fourth, and to the best of our knowledge, 
this is the first scientific analysis based on ÖffSchOR in the context of cyber risk 
research.3

3 A few other studies have previously used ÖffSchOR, mainly in OpRisk research (see e.g. Sturm 2013; 
Kaspereit et al. 2017; Eckert et al. 2020).
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ÖffSchOR database

ÖffSchOR is an information database on publicly disclosed loss events of opera-
tional risks in the financial sector. The database is operated by VÖB-Service GmbH, 
a subsidiary of the Federal Association of Public Banks (Bundesverband Öffentli-
cher Banken Deutschlands, VÖB) in Germany. In general, losses of a gross amount 
of EUR 100,000 or more are recorded in the database, including reputational risks 
and risk scenarios. The industry focus is on financial services and insurance com-
panies in Europe. In addition, interesting loss events can be examined from other 
economic sectors or regions. ÖffSchOR uses print and online media services to col-
lect data.

All loss events are categorised according to the Capital Requirements Regulation 
(CRR) specifications (EU 2013). Loss incidents are assigned to different subcatego-
ries, such as conduct risk, legal risk, information and communication technology 
(ICT) risk or sustainability risk. To date, however, there is no unique identifier for 
cyber risk in the ÖffSchOR database. Therefore, subcategories distinguishing cyber 
and non-cyber events are necessary.

Methodology

Motivated by the framework of Fang et al. (2021), the methodology of this study is 
organised into six key components: (1) data preparation, analysis and transforma-
tion; (2) marginal model; (3) modelling frequency; (4) modelling severity; (5) mod-
elling temporal dependence and (6) predicting the next time period.

Data preparation, explorative data analysis and data transformation

As of 30 September 2021, the ÖffSchOR database consists of 3,261 operational loss 
events between 2002 and 2021. Given that the database does not categorise cyber 
events, it is first necessary to allocate the sample to cyber and non-cyber incidents. 
Cyber risk is defined as “any risk emerging from the use of ICT that compromises 
the confidentiality, availability, or integrity of data or services […]. Cyber risk is 
either caused by natural disasters or is man-made where the latter may emerge from 
human failure, cyber criminality (e.g. extortion, fraud), cyber war or cyber terror-
ism” (Eling et al. 2016). Based on this definition, which has been suggested as the 
most comprehensive in the cyber risk literature (Strupczewski 2021), Tables 2 and 3 
present the search strategy employed to identify 341 cyber events in the ÖffSchOR 
database. The strategy combines both systematic and manual search steps to max-
imise and validate the categorisation of cyber events. In order to gain preliminary 
insights from the data, a descriptive analysis is conducted.

The dataset is then transformed into a time series, where yit is the amount of all 
cyber losses of company i in year t, n is the number of companies in the data and 
T is the time horizon. Non-cyber incidents and companies without a single cyber 



441Modelling and predicting enterprise‑level cyber risks in…

Ta
bl

e 
2 

 S
ea

rc
h 

an
d 

id
en

tifi
ca

tio
n 

of
 c

yb
er

 e
ve

nt
s i

n 
th

e 
Ö

ffS
ch

O
R

 d
at

ab
as

e 
an

d 
re

m
ai

ni
ng

 d
at

a 
po

in
ts

 (i
n 

bo
ld

)

Va
lu

es
 in

 it
al

ic
s u

se
d 

to
 h

ig
hl

ig
ht

 th
e 

di
ffe

re
nc

e 
or

 a
dd

-o
n 

of
 d

at
a 

po
in

ts

St
ep

Ta
sk

D
at

a 
po

in
ts

0
Ex

tra
ct

io
n 

of
 Ö

ffS
ch

O
R

 d
at

ab
as

e 
as

 o
f 3

0 
Se

pt
em

be
r 2

02
1

3,
26
1

1
Sy

ste
m

at
ic

 a
nd

 m
an

ua
l s

ea
rc

h 
of

 c
yb

er
 e

ve
nt

s a
cc

or
di

ng
 to

 th
e 

de
fin

iti
on

 o
f E

lin
g 

et
 a

l. 
(2

01
6)

 b
y 

id
en

tif
yi

ng
 c

yb
er

 k
ey

w
or

ds
 

in
 th

e 
ev

en
t d

es
cr

ip
tio

n,
 a

cc
or

di
ng

 to
 T

ab
le

 3
(−

 2
89

8)
36
3

2
M

an
ua

l r
ev

ie
w

 o
f a

ll 
ta

gg
ed

 c
yb

er
 in

ci
de

nt
s i

n 
te

rm
s o

f v
al

id
ity

 a
nd

 c
on

si
ste

nc
y 

in
cl

ud
in

g 
re

ca
te

go
ris

at
io

n,
 if

 n
ec

es
sa

ry
(−

 3
8)

32
5

3
M

an
ua

l r
ev

ie
w

 o
f r

an
do

m
ly

 se
le

ct
ed

 n
on

-c
yb

er
 in

ci
de

nt
s i

n 
te

rm
s o

f v
al

id
ity

 a
nd

 c
on

si
ste

nc
y 

in
cl

ud
in

g 
re

ca
te

go
ris

at
io

n,
 if

 
ne

ce
ss

ar
y

(+
 21

)
34
1



442 D. Zängerle, D. Schiereck 

incident are not considered in the analysis. If several companies are affected by an 
event, the reported loss figure is equally distributed. Further, if a company expe-
riences several cyber incidents in one year, the total amount is accumulated. This 
transformation results in a multivariate time series with many instances in which 
yit = 0 , indicating that many companies, i, did not suffer any cyber loss in year t.

Marginal model

In the following, let the random variable Yit represent the cyber loss of company i in 
year t. Thus, the distribution function, Fit , of Yit and the corresponding density function, 
fit , can be described as follows (Shi and Yang 2018; Fang et al. 2021):

where I(·) is the indicator function, pit is the probability that company i experiences 
no cyber incident in year t, Mit is the distribution function and mit is the correspond-
ing density function of Yit under the condition that Yit > 0 (i.e. a cyber loss has 
occurred).

Modelling frequency

A logistic regression is performed to determine the probability of occurrence 1 − pit . 
As the dataset consists of limited additional information, the temporal trend t and the 
categories industry (ind) and region (reg) are included, such that the overall model M 
equals:

(1)
Fit(y) = pit +

(
1 − pit

)
Mit(y),

fit(y) = pitI(y = 0) +
(
1 − pit

)
mit(y),

Table 3  Unique keywords 
(incl. frequency) to identify 
cyber events in the ÖffSchOR 
database

Threats Vulnerability Assets

Hacker (120) Data breach (39) Customer data (23)
Skimming (98) Data security (23) Smartphone (5)
Data theft (87) Security gap (15) Bitcoin (4)
Cyber (60) pushTAN/mTAN (10) Security system (3)
Phishing (51) E-mail (7) Mobile (2)
Stealing data (10) Password (3)
DDoS (7) PIN (1)
IT attack (2)
Social engineering (1)
Spam (1)
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where Xind = {Bank,Municipal bank, Insurance,Other} and 
Xreg = {DACH,Europe, Americas,Other} . The category other serves as the base 
reference. The Results section analyses further model variants. The aim is to obtain 
a robust and valid estimate of pit while minimising the coefficient β.

Modelling severity

Given that cyber risks are skewed and heavy tailed (Maillart and Sornette 2010; 
Eling and Wirfs 2016b, 2019; Wheatley et  al. 2016; Fang et  al. 2021), a mixed-
model approach based on EVT is chosen to model the distribution of Mit:

where Θ is the parameter vector and Hi(y ∣ Θ) and Gi(y ∣ Θ) are the distribution 
functions below and above the threshold �i , respectively.

This approach offers a high degree of flexibility in the choice of distribution func-
tions. Due to the sparse data and for robust estimation of Θ, a probability distribu-
tion with few shape parameters is preferred, especially for the distribution below 
the threshold. Based on the explorative data analysis and for a simple illustration 
of the methodology, we set Hi(y ∣ Θ) ∼ N

(
�Hi

, �Hi

)
 to the normal distribution and 

Gi(y ∣ Θ) ∼ GPD
(
�Gi

, �Gi
, �
)
 to the generalised Pareto distribution (GPD) while 

considering the log-transformed losses (Eling and Wirfs 2016b; Eling and Loperfido 
2017; Fang et al. 2021). The parameter vector Θ is then estimated numerically using 
the maximum likelihood estimation (MLE). To further analyse the robustness of the 
model, the estimation of Θ is performed and evaluated with different timeframes 
t = {t0,… , T∗} with T∗ ∈ {T − 5,… , T}.

Modelling temporal dependence

To model the temporal dependence (i.e. serial trend, between Yi1,… , YiT ), we use a 
copula structure such that

where y =
(
y1,… , yT

)
,Fi1,… ,FiT are the marginal distributions from Eq. (1) and C 

is the copula. A large variety of copulas could be used. As our focus is on modelling 

(2)

log

(
pit

1 − pit

)
= �0 + �1t + �2t

2

+
(
�3, �4, �5

)T
Xind +

(
�6, �7, �8

)T
Xreg

+
(
�9, �10, �11

)T
Xind ⋅ t +

(
�12, �13, �14

)T
Xreg ⋅ t

+
(
�15, �16, �17

)T
Xind ⋅ t

2 +
(
�18, �19, �20

)T
Xreg ⋅ t

2,

(3)Mit(y ∣ Θ) =

{(
1 − 𝜙𝜇i

)
Hi(y∣Θ), y ≤ 𝜇i,(

1 − 𝜙𝜇i

)
+ 𝜙𝜇i

Gi(y∣Θ), y > 𝜇i,

(4)Fi(y) = C
(
Fi1

(
y1
)
,… ,FiT

(
yT
))
,
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the serial trend in a time series setting, the D-vine copula provides a good fit—offer-
ing flexibility and efficiency and incorporating the temporal structure of time series 
data (Shi and Yang 2018; Fang et al. 2021).

Considering the random variable Yi =
(
Yi1,… , YiT

)
 of company i, the joint den-

sity of its cyber losses can be expressed as follows:

with y =
(
y1,… , yT

)
, fit

(
yt
)
 from Eq. (1) and where f̃i,s,t∣(s+1)∶(t−1)

(
ys, yt ∣ y(s+1)∶(t−1)

)
 

is the ratio of bivariate distribution to the product of the marginals (see Equations 
(A.1) –  (A.3) in the Appendix and Smith (2015), Shi and Yang (2018), and Fang 
et al. (2021) for technical details). To model the multivariate time series, the log-
likelihood function (LL) equals

where yk =
(
yk1,… ykT

)
 . To estimate the model’s parameters, the two-stage infer-

ence functions for margins (IFM) approach is used, which are practical for predic-
tive applications and computationally efficient (Joe 2005). Applying the sequential 
approach (Shi and Yang 2018), we estimate and fix the dependence structure for 
each tree by selecting the bivariate copula with the lowest Akaike information crite-
rion (AIC). Starting from the first tree, we estimate the next tree using the estimates 
of the previous tree(s). For practical reasons, we also fix the dependence structure 
in each tree, which leads to the same copula within one tree but can differ between 
trees.

Due to the flexible bivariate, pairwise copula construction, a variety of copulas can 
be used. With regard to the limited data, the following one-parametric copulas are con-
sidered for the pairwise copula construction: the independence copula, the Gaussian 
copula, the Frank copula, the Joe copula, the Clayton copula and the Gumbel copula. 
Special attention is dedicated to the Frank copula, which can represent both positive 
and negative dependence structures and has already been successfully applied in com-
parable scientific investigations (Fang et al. 2021; Kularatne et al. 2021):

with � ≠ 0 being the copula parameter. Further information on the other copulas can 
be found in Nelsen (2006).

Predicting the next time period

The final aim is to predict the probability of an occurrence and the economic impact 
of a potential cyber event on company i for the future time period T + 1 . In the 
first step, the probability of occurrence 1 − pi,T+1 of a cyber event for company i is 

(5)fi(y) =

T∏
i=1

fit
(
yt
) T∏

t=2

t−1∏
s=1

f̃i,s,t∣(s+1)∶(t−1)
(
ys, yt ∣ y(s+1)∶(t−1)

)
,

(6)

LL
(
y1,… , yn

)
=

n∑
i=1

T∑
t=1

log fit
(
yit
)
+

n∑
i=1

T∑
t=2

t−1∑
s=1

log
(
f̃i,s,t∣(s+1)∶(t−1)

(
yis, yit ∣ yi,(s+1)∶(t−1)

))
,

(7)c
(
u1, u2

)
= −�−1 log

(
1 +

(e−�u1 − 1)(e−�u2 − 1)

e−� − 1

)
,
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estimated. In the second step, the loss amount Yi,T+1 is determined under the condi-
tion that a cyber event has occurred. Given historical loss data yi =

(
yi1,… yiT

)
 for 

company i, the conditional density of Yi,t+1 ∣ yi can be expressed as follows:

with i ∈ {1,… , n} . This method allows prediction of the cyber loss distribution of 
entity i one step ahead of time. As there is no closed formula for Yi,T+1 , a Monte 
Carlo simulation based on the rejection sampling method is used for the prediction 
(Robert and Casella 2004; Fang et  al. 2021). The validity and goodness of fit of 
the predicted model are measured by the ranked probability score (RPS), which is a 
commonly used accuracy measure (Epstein 1969; Gneiting and Raftery 2007). Due 
to the nature of the (mixed-model) approach, standard measures such as mean abso-
lute error (MAE) and mean standard error (MSE) are not applicable.

Results

Data preparation, explorative data analysis and data transformation

Since the ÖffSchOR database does not consist of any identifier for cyber events, all 
3,261 data points are first categorised into cyber and non-cyber events. Based on 
the cyber definition of Eling et al. (2016) and the iterative search and identification 
presented in Tables 2 and 3, 22 unique keywords for cyber risks are identified and 
further categorised into threats (10 keywords), vulnerabilities (7) and risk objects 
(5) in line with Böhme et al. (2019). The most frequently identified keywords from 
the threats category are hacker (120), skimming (98), data theft (87), cyber (60) and 
phishing (51). The most frequently identified keywords from the vulnerabilities cat-
egory are data breach (39) and data security (23), and the most frequently identified 
keyword from the assets category is customer data (23). In total, 341 cyber (10%) 
and 2,920 non-cyber events are determined in the database and manually checked 
for correct categorisation.

Table  4 summarises the descriptive analysis of the ÖffSchOR database, split 
into four different panels. According to Panel A, cyber risks differ from non-cyber 
(operational) risks. Cyber risks have a lower average loss severity and skewness. For 
example, the average loss of a cyber event is EUR 17.4 million, while a non-cyber 
event costs on average EUR 210.9 million. In terms of skewness, the 95% quantile 
of cyber events is approximately EUR 82 million and the maximum is more than 10 
times that amount at EUR 877 million. For non-cyber events, the 95% quantile is 
almost 10 times as large as the same figure for cyber events, at almost EUR 800 mil-
lion. The maximum for non-cyber events of EUR  24.6  billion corresponds to a 
30-fold multiplier between the maximum and the 95% quantile.

Panel B focuses solely on cyber risks and demonstrates a detailed split regard-
ing the event origin. Almost three quarters (74%) of all cyber incidents have an 
external origin, which also correspond to the highest loss amounts (95% quantile: 

(8)fi,t+1∣1∶t(y) = fi,t+1(y)

t∑
s=2

f̃i,s,t+1∣(s+1)∶t
(
ys, y ∣ y(s+1)∶t

)
,
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EUR 82 million, maximum: EUR 877 million). The human factor (13%) is a consid-
erable source of risk—with similarly high figures. Cyber events caused by internal 
processes (3%) and systems (11%) exhibit a lower average loss, but a comparable 
median of EUR 1–1.3 million.

Regarding the regional distribution of cyber incidents (Panel C), more than two 
thirds of all cases are reported in Germany, Austria and Switzerland (DACH) (61%) 
and Europe (15%). Although a minority of events originates from the Americas 
(16%) and the rest of the world (7%), these events demonstrate a much higher loss 
value, both on average and in the quantiles. For example, the average loss amount in 
the Americas and the rest of the world is between EUR 60–75 million, and the 95% 
quantile is around EUR 300–330 million. In comparison, the average loss amount 
in DACH is EUR 2.7 million and the 95% quantile is EUR 6.9 million. One could, 
therefore, conclude that cyber losses in DACH and Europe are mild in relative 
terms. However, the focus of the ÖffSchOR database is on loss data from Germany 
and Europe, which is why non-European losses are recorded from a relatively high 
absolute loss figure.

Finally, Panel D indicates that more than one company is affected in one third of 
all cyber incidents. In these cases, the average loss amount as well as the 95% quan-
tile are approximately three times higher compared to a singular (e.g. one company 
is affected) incident.

In summary, cyber and non-cyber risks must be distinguished and separately 
modelled. In particular, external cyber events have historically corresponded to 
the highest loss amounts and almost every third cyber event has affected multiple 

Table 4  Descriptive analysis of ÖffSchOR database regarding the loss severity (in EUR million)

N % ∅ Min Quantiles Max

25% 50% 75% 95%

Panel A: Cyber vs. non-cyber
Cyber 341 10 17.4 0.0 0.2 0.5 2.0 82.0 877.0
Non-cyber 2920 90 210.9 0.0 0.3 2.0 38.6 799.8 24,643.0
Panel B: Cyber risks only—risk origin (according to CRR)
External 251 74 18.3 0.0 0.2 0.4 1.9 86.3 877.0
Internal processes 11 3 5.3 0.1 0.6 1.0 2.2 24.5 39.0
Human failure 43 13 19.1 0.2 0.5 1.5 13.2 77.8 149.0
System failure 36 11 6.7 0.7 0.9 1.3 7.5 23.5 30.3
Panel C: Cyber risks only—regional distribution
DACH 209 61 2.7 0.0 0.1 0.3 0.7 6.9 149.0
Europe 52 15 8.6 0.1 0.8 2.0 5.4 41.4 75.0
Americas 55 16 60.3 0.1 0.8 4.0 61.5 306.5 624.2
Other 25 7 75.0 0.1 0.6 5.2 34.0 326.2 877.0
Panel D: Cyber risks only—single vs. multiple entities affected
Single 236 69 11.2 0.0 0.1 0.4 2.0 39.8 624.2
Multiple 105 31 30.0 0.1 0.3 0.5 2.0 123.4 877.0
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entities. Nevertheless, non-cyber risks statistically exhibit higher mean values and 
skewness compared to cyber risks.

To conclude, the cyber data subset needs to be transformed into a time series. 
Further limitations of the dataset arise due to the incompleteness of the data and 
restrictions of the time horizon. Specific loss amount information is available for 
only 207 of the 341 cyber incidents. As the dataset is already very small, all 341 
cyber incidents are used to model the frequency according to Eq.  (2), and the 
remaining 207 data points are used thereafter—in particular for modelling the sever-
ity. If several companies are affected by a cyber incident, the loss amount is dis-
tributed equally among all companies. The time horizon corresponds to one year, 
which is why losses during the year are aggregated at the annual level. The relevant 
timeframe is set to t0 = 2005 and T = 2018 , meaning that we predict the likelihood 
and severity of an enterprise-level cyber incident for year T + 1 = 2019.4 In total, 
the time series consists of n = 275 companies for the modelling of frequency and 
n = 184 companies thereafter, over a time span of 14 years.

Modelling frequency

To estimate the probability of a cyber event 1 − pit , a logistic regression is applied 
according to the base model M from Eq. (2). In addition, three model variants are 
considered: M1 (without quadratic interaction terms, i.e. �15,… , �20 = 0 ), M2 
(without regional dummy variable Xreg , i.e. �6,… , �8, �12,… , �14, �18,… , �20 = 0 ) 
and M3 (without quadratic interaction terms and without regional dummy variable, 
thus, �3,… , �5, �12,… , �20 = 0 ). Table 5 summarises the regression results.

First, all parameters of models M1 and M3 are significant at p ≤ 0.05 , which 
do not hold for M and M2. In particular, the regional dummy variables Xreg are 
only significant with the temporal interaction term t. Furthermore, we find that 
𝛽3,… , 𝛽5 > 0 and 𝛽9,… , 𝛽11 > 0 , implying an initially positive and subsequently 
negative non-linear trend for the dummy variable Xind. The reverse trend (first nega-
tive, then positive) is observed for the regional dummy variable due to 𝛽6,… , 𝛽8 < 0 
and 𝛽12,… , 𝛽14 > 0.

Comparing the four models, M exhibits the lowest AIC and highest log-likeli-
hood value (LL) as well as the highest pseudo R2 (McKelvey and Zavoina 1975) and 
area under curve (AUC). M2 demonstrates only slightly less favourable values for 
the considered ratios, followed by M1 and M3. The Hosmer–Lemeshow test (HLT) 
can be rejected for all models. Thus, in principle, model M could be the most appro-
priate. However, we choose model M2 for the following reasons. First, the ANOVA 
test confirms that there is no significant difference between models M1 and M3 
with respect to M2 ( p < 0.01 ) such that model M2 is preferred over the variants 
M1 and M3. Second, M and M2 reveal similar goodness-of-fit statistics, with M2 
having fewer regression parameters. Under the condition of variable reduction, M2 
is, thus, selected as the preferred model. The adequacy and accuracy of model M2 

4 For t < 2005 and t > 2019 , a limited number of complete data points are observed.
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are further assessed in terms of MAE and MSE, as reflected in Table 6. Both the 
MAE and the MSE are low, with 2.0% and 0.1% respectively. Furthermore, M2 has 
the lowest MAE and MSE regarding the subcategories municipal bank  (MB) and 
insurance  (I). Hence, the adequacy and accuracy of model M2 can be sufficiently 
confirmed. Based on M2, the probability 1 − pi,T+1 of a cyber event for company i 
will be predicted.

Modelling severity

We subsequently model the severity of cyber losses according to the proposed mixed 
model from Eq.  (3). As described previously, only 207 cyber losses with a loss 
amount yit > 0 are used in the following analysis. Due to the very small dataset and 
the fact that six parameters of the vector Θ = {�, ��, �,��,�G, �G} need to be esti-
mated, separated modelling by subindustry—analogous to the probability of occur-
rence—cannot be conducted in order to ensure convergence and robust estimation.

Figure  1 depicts the plotted log-transformed cyber losses and the fitted mixed 
model, which exhibits a good overall fit to the data. In greater detail, Table 7 pre-
sents the estimated values and standard deviations of the parameter vector Θ for 
T = 2018 and the estimation results with a truncated period from t0 = 2005 to 
T = 2013,… , 2017 . The truncated analysis is performed to affirm the overall robust-
ness of the model due to data scarcity.

For T = 2018 , we observe a log threshold μ = 7.12 , which nominally is equal to 
EUR 13.2 million  (107.12). Regarding the normal distribution below the threshold, 
the log-expected value is �G = 5.62 (nominally EUR 417,000) with a standard devi-
ation of log(�G) = 0.67 . The scaling parameter �� of the generalised Pareto distribu-
tion is equal to 0.06 and the shape parameter � = 1.56 . With �� = 0.21 , approxi-
mately every fifth cyber loss is above the threshold value µ. Furthermore, Table 7 
presents that there are no significant changes in the estimated parameters while trun-
cating the time period, indicating a very robust estimation of the parameter vector Θ 
and a robust mixed-model approach.

Table 6  Mean absolute error (MAE) and mean squared error (MSE) of the four regression models

Σ: Total, B: Bank, MB: Municipal bank, I: Insurance, O: Other
Bold highlights the selected model- Model M2

MAE MSE

Σ B MB I O Σ B MB I O

M 2.1% 2.9% 4.0% 6.5% 4.0% 0.1% 0.1% 0.3% 1.0% 0.3%
M1 1.8% 2.8% 4.4% 7.0% 5.6% 0.1% 0.1% 0.3% 1.2% 0.6%
M2 2.0% 2.8% 4.0% 6.4% 4.1% 0.1% 0.1% 0.3% 1.0% 0.3%
M3 1.8% 2.8% 4.5% 7.0% 5.6% 0.1% 0.1% 0.3% 1.2% 0.6%
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Modelling temporal dependence

Following the methodology, we next model the serial trend based on the D-vine 
copula from Eq.  (5). Regarding the pair-copula construction, six bivariate copulas 
are considered Ω = {Independent,Gaussian,Clayton, Frank,Gumbel, Joe} . Given 
the time frame T − t0 = 13 , a maximum of 13 trees could be estimated. However, 
due to the sparse information on serial trends in the database, we decide to limit the 
estimation to five trees, meaning that the temporal dependence of the last six years is 

Fig. 1  Histogram of the log-
transformed cyber losses and 
plot of the estimated mixed 
model (red line)

Table 7  Estimated parameter values and standard deviations (SD) of Θ while using different time inter-
vals t

0

= 2005 and T = 2013,… , 2018

[bold] highlights the selected year - 2018 is selected

� SD(�) �� SD(��) � SD(�) �� SD(��) �G SD(�G) �G SD(�G)

2013 7.12 0.00 0.02 0.01 1.29 0.32 0.21 0.04 5.56 0.06 0.63 0.05
2014 7.12 0.00 0.03 0.01 1.56 0.46 0.17 0.03 5.50 0.05 0.60 0.04
2015 7.12 0.00 0.05 0.02 1.59 0.44 0.19 0.03 5.58 0.06 0.67 0.05
2016 7.12 0.00 0.08 0.04 1.45 0.56 0.21 0.03 5.58 0.05 0.66 0.04
2017 7.12 0.00 0.08 0.04 1.47 0.54 0.20 0.03 5.61 0.05 0.66 0.04
2018 7.12 0.00 0.06 0.03 1.56 0.46 0.21 0.03 5.62 0.05 0.67 0.04



452 D. Zängerle, D. Schiereck 

taken into account in the copula model. For each tree Tr1,… , Tr5 , the bivariate link-
ing copula with the lowest AIC is chosen.

As reflected in the results in Table 8 (Panel A), the Frank copula demonstrates 
the lowest AIC for all trees, which is why the Frank copula is selected to represent 
the pairwise serial trend. It is important to note that for the Gumbel and Joe copula 
�̂ ≈ 1 and for the Clayton copula �̂ ≈ 0 regarding the trees Tr1,… , Tr5 , suggesting 
very little to no temporal dependence. However, the log-likelihood and AIC are sig-
nificantly less favourable in comparison to the Frank and Gaussian copula.

Panel B provides the estimated parameter value, �̂  , of the selected bivariate link-
ing copula (Frank), its standard deviation and the Kendall rank correlation coeffi-
cient � for Tr1,… , Tr5 . The parameter �̂  of the Frank copula is negative for all trees, 
indicating a negative temporal dependence. This result suggests that if a company 
has not yet experienced a cyber loss, it is relatively likely that a loss will occur in 
the next time period. However, if there has been a previous cyber incident, it is rel-
atively unlikely that another cyber incident will occur within the next five years. 
This negative dependence may be a result of the fact that (external) attackers are 
not interested in breaching the same company twice. In the aftermath of an attack, 
companies tend to close security gaps and invest in their cyber risk management 
(Kamiya et al. 2021).

Further assessment of the goodness of fit reveals that the RPS of the mixed 
D-vine with Frank is the lowest at 0.219, followed by the mixed D-vine with Gauss 
(0.251) and independence copula (0.311). Therefore, the mixed D-vine with Frank 
provides the best fit and is chosen to represent the serial trend.

Predicting the next time period

Finally, we predict the frequency and severity of an enterprise-level cyber event with 
respect to the next time period T + 1 = 2019 . Table 9 summarises the key statistical 
values derived from the distribution Yi,T+1 ∣ yi for randomly selected companies in 
the four industry categories. Values for the maximum and tail value at risk (TVaR) 
are not presented because the shape parameter 𝜉 > 1 (i.e. we deal with infinite mean 
models with extreme uncertainties in very high quantiles; see e.g. Chavez-Demoulin 
et al. 2016; Eling and Wirfs 2019).

Regarding the probability of occurrence 1 − pi,T+1 , the chance of a cyber inci-
dent in the next year is predicted to be 0.6% for a selected municipal bank, 2.0% 
for a bank, 8.7% for an insurer and 1.4% for any other financial services company. 
Under the condition that a cyber incident does occur in the next year, the mini-
mum loss value is estimated to be around EUR 1,000–3,000, while the median loss 
ranges between EUR 455,000 (insurance) and EUR 585,000 (other). With respect 
to value at risk (VaR) measures, the VaR(90%) is equal to EUR 14.6 million for the 
municipal bank and EUR 15.4 million for the selected bank, while the VaR(95%) is 
approximately EUR 18.5–22.3 million. At a higher confidence level, the VaR(99%) 
ranges from EUR 69.5 million (municipal bank) to EUR 543 million (insurance). 
Even more extreme values are observed for the VaR(99.5%), indicating a worst-case 
incident that can cause the collapse of a company.
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Discussion and conclusion

This study provides new insights on the empirical nature and prediction of cyber 
risks at the enterprise level under data scarcity. We introduced the ÖffSchOR data-
base to cyber risk research and applied advanced modelling techniques adapted from 
the work of Shi and Yang (2018), Eling and Wirfs (2019) and Fang et al. (2021) to 
predict the frequency, severity and serial trend of enterprise cyber risks. Our find-
ings first suggest that cyber risks are indeed different from operational risks. In par-
ticular, we found that cyber risks are lower on average, less skewed and less extreme 
compared to non-cyber risks in the dataset (Biener et al. 2015; Woods and Böhme 
2021). Second, the industry subcategories exhibited different probabilities of occur-
rence, a finding which has not yet been addressed in previous studies. Third, in 
modelling the impact of the log-transformed cyber incidents, the POT model with 
a normal distribution below the threshold demonstrated a satisfying fit, which is 
in line with previous empirical results and supports the differentiation of daily and 
extreme cyber risks (Eling and Loperfido 2017; Eling and Wirfs 2019). Due to the 
limited data, a separate loss modelling for each subcategory was not possible. By 
leveraging the serial dependence, the D-vine copula was able to predict the impact 
of a potential cyber incident in the next time period with a negative correlation over 
time (Fang et al. 2021). The prediction results provide some of the first quantitative 
insights on the financial impact of a cyber incident at the enterprise level based on 
historic data.

Our results underline that high-level descriptive statistics from commercial data-
sets might be misleading for enterprise risk managers due to information asymmetry 
and interdependence of loss events (Eling and Wirfs 2016a; Marotta et  al. 2017; 
Zeller and Scherer 2021). In particular, our model predicted a median enterprise-
level loss amount of EUR 455,000− 585,000, only a fraction of the millions of dol-
lars often cited in surveys (e.g. USD 3.86 million; IBM Security 2020). In a U.K. 
survey, the maximum loss is around GBP  310,000 (~ EUR  370,000; Heitzenrater 
and Simpson 2016), while Romanosky (2016) estimates the average data breach 
loss to be even lower, at USD  200,000 (~ EUR  180,000), bearing in mind that 
data breaches only account for 25% of cyber events and that the transfer from data 

Table 9  Predicted probability 
of occurrence 1 − pi,T+1 and 
statistical values (in EUR 
thousand) of the distribution 
Yi,T+1 ∣ yi > 0 for randomly 
selected companies

Bank Municipal bank Insurance Other

1 − pi,T+1 2.0% 0.6% 8.7% 1.4%
Minimum 1 1 1 3
25% quantile 182 123 147 205
50% quantile 533 465 455 585
75% quantile 2,218 2,033 1,707 2,679
VaR(90%) 15,373 14,611 14,244 14,971
VaR(95%) 22,309 18,446 18,957 20,326
VaR(99%) 351,255 69,496 542,616 292,680
VaR(99.5%) 490,671 107,435 1,902,275 720,306
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breaches to actual costs is misrepresentative (Eling and Wirfs 2019). Moreover, the 
estimated extreme losses of VaR(99%) and VaR(99.5%) can be compared to mega 
breaches such as those of Home Depot (USD 340 million), Anthem (USD 407 mil-
lion) and Yahoo (USD 502 million) in the U.S. (Poyraz et al. 2020) or to General 
Data Protection Regulation (GDPR) fines on Whatsapp (EUR  225  million) and 
Amazon (EUR 745 million) in Europe (CNPD 2021; EDPB 2021). The estimated 
VaR(95%) can be interpreted as the lower limit of a GDPR penalty, at a minimum of 
EUR 20 million (Poyraz et al. 2020). This information supports the impression that 
our estimates are reasonable in size.

Furthermore, our findings suggest that cyber risks are less heavy tailed than 
often anticipated. For example, Eling and Wirfs (2019) simulate VaR measures for 
a small bank with 5,000 employees, which is comparable to our municipal bank cat-
egory. Our estimated figures are significantly lower, such as EUR 18.5 million vs. 
EUR  48  million (USD  55  million) for the VaR (95%) and EUR  69.5  million vs. 
EUR 422 million (USD 480 million) for the VaR (99%). One conclusion from these 
findings is that cyber risks are just not that harmful (Woods and Böhme 2021). 
Another reason suggested by practitioners is that attackers have focused on easier 
targets while the financial services industry is comparably well protected due to reg-
ulated risk management and anti-money laundering systems. However, cyber risks 
are still heavy tailed and extreme. With every fifth cyber incident above the thresh-
old of EUR 13.2 million, there is still a (small) chance of a devastating cyber event 
seriously harming an individual company (Eling et al. 2016; Wheatley et al. 2021).

Comparing the four subcategories, our findings imply that bigger banks suffer 
from a higher potential loss than smaller (municipal) banks, indicating that the loss 
amount might be correlated to the company size (i.e. revenue or number of employ-
ees; Poyraz et al. 2020). Furthermore, the selected insurance company exhibited a 
four-times greater chance of a cyber incident, with the highest estimated risk meas-
ures for VaR (99%) and VaR (99.5%). Similar heavy tails were observed for the cate-
gory other consisting of payment providers, stock exchanges and other financial ser-
vices providers, which seems plausible due to their high interconnectivity to other 
companies.

In practice, most risk and expert assessments are solely qualitative due to the 
limited data available on cyber incidents. For example, the Operationally Criti-
cal Threat, Asset, and Vulnerability Evaluation (OCTAVE) provided one of the 
first frameworks to identify and manage information security risks by analysing a 
company’s asset, threat and vulnerability information (Alberts et al. 1999). Further 
information security risk assessment (ISRA) methods have been developed, with 
the Core Unified Risk Framework (CURF) being the most comprehensive and all-
inclusive approach (Wangen et al. 2018). A specific cyber risk classification frame-
work named Quantitative Bow-tie (QBowTie) has been suggested by Sheehan et al. 
(2021) combining proactive and reactive barriers to reduce a company’s risk expo-
sure and quantify the risk. However, all these (qualitative) methods are generally 
based on the assessment of probability of occurrence and of the associated conse-
quence of an event, i.e. requiring a quantification of the (cyber) risk.

Compared to that, our analysis provides a helpful tool in the ongoing quantifi-
cation of cyber risks. Nevertheless, the method also comes with limitations. First, 
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researchers have argued that the rapidly changing cyber risk environment may ren-
der historic data useless (CRO Forum 2014; Eling and Schnell 2016). Given ongo-
ing digitisation and in times of a global pandemic, the usefulness of historic data 
can be questioned. A further limitation is the assumption of independence between 
entities. Particularly for extreme cyber risks and mega breaches, there is a high cor-
relation between companies (Biener et al. 2015). However, our framework could be 
extended to model both the serial and cross-company dependence, as conceptually 
shown by Acar et al. (2019) and Zhao et al. (2020) for dense data. Further limita-
tions arise due to the use of the ÖffSchOR database. In particular, ÖffSchOR relies 
on print and online media to detect operational risk events which could bias the 
recorded loss events and in turn the modelling results. The latter could also be influ-
enced by the historical (log-normal) distribution of the cyber loss severity. Further-
more, the total number of identified cyber events is rather small compared to other 
studies within the research (e.g. 1,579 cyber incidents are analysed by Eling and 
Wirfs 2019), challenging the robustness of our results. Finally, due to the limited 
dataset, we did not distinguish between different cyber risks or loss categories even 
though different types of cyber risks follow different distributions (Eling and Loper-
fido 2017; Eling and Jung 2018) and cyber risks do not only cause economic losses, 
but also intangible losses, including reputational damage (Xie et al. 2020).

Despite these limitations and the dynamic nature of cyber risks (Boyer 2020), 
this study contributes to the literature on cyber risk measurement and can help prac-
titioners such as risk managers, insurers and policymakers by providing a quantita-
tive and data-driven cyber risk assessment. Insurance stakeholders particularly face 
a major challenge in assessing and understanding cyber risk due to the lack of his-
torical data (Cremer et al. 2022). We believe that the provided methodology could 
be combined and integrated with existing pricing tools and factors from cyber insur-
ers to better evaluate cyber risk and the required risk-based premiums at the enter-
prise level (Nurse et al. 2020).

There are plenty of future research opportunities to further develop quantitative 
approaches. With better and more data, more accurate models can be designed, for 
example by including both cyber incident data and corporate financial data as pro-
posed by Palsson et al. (2020) or by using network models as seen in Fahrenwaldt 
et al. (2018), Jevtić and Lanchier (2020) and Wu et al. (2021). The integration of 
different approaches from diverse disciplines poses extensive future opportunities in 
the field of cyber risk measurement (Falco et al. 2019).

Appendix

Additional formulas

See Fang et al. (2021), Shi and Yang (2018), and Smith (2015) for further technical 
details.
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