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Abstract
This contribution evokes Orio Giarini’s courage to think ‘outside the box’. It pro-
poses a practical way to bridge the gap between risk (where probabilities of occur-
rence are fully known) and uncertainty (where these probabilities are unknown). 
However, in the context of insurance, neither extreme applies: the risk type of a 
newly enrolled customer is not fully known, loss distributions (especially their tails) 
are difficult to estimate with sufficient precision, the diversification properties of a 
block of policies acquired from another company can be assessed only to an approx-
imation, and rates of return on investment depend on decisions of central banks that 
cannot be predicted too well. This contribution revolves around the launch of an 
innovative insurance product, where the company has a notion of whether a favour-
able market reception is more likely than an unfavourable one, of the chance of 
obtaining approval from the regulatory authority and the risk of a competitor launch-
ing a similar innovation. Linear partial information theory is proposed and applied 
as a particular practical way to systematically exploit the imprecise information that 
may exist for all of these aspects. The decision-making criterion is maxEmin, an 
intuitive modification of the maximin rule known from games against nature.

Keywords Uncertainty · Linear Partial Information · MaxEmin criterion · New 
insurance product

È meglio essere uccel di bosco, che uccel di gabbia
(Better to be a bird in the woods than a bird in the cage; Italian proverb)

Introduction and motivation

The Italian proverb cited above is a fitting motto for Orio’s life—he was always will-
ing to consider a new idea. When, at a European Group of Insurance Economists 
(EGRIE) meeting, a paper of mine drew criticism, he would say, “At least this piece 
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encourages us to think outside the box”. As the former manager of a jazz radio sta-
tion in Trieste (Italy), he arranged for bass and drums to accompany Jim Garven 
(Baylor University) on the flute and myself on the piano at a short gig at the EGRIE 
seminar of 1987 in Geneva. That was ‘outside the box’ too because he had never 
heard either of us play before.

Orio’s heart lay with the more applied contributions that, today, would be pub-
lished in the Issues & Practice series of The Geneva Papers. For this reason, this 
paper is motivated by a practical issue that concerned this author 10 years ago. At 
the conference, ‘Insuring the Health of an Ageing Population’ organised by The 
Geneva Association, the delegate of a U.K. pension insurer described an interest-
ing innovation, which has become known as an enhanced annuity. When the com-
pany learns of a serious health condition, it offers the policyholder an extra payment 
to finance some of the expenditure that is not covered by health insurance. This is 
feasible because the condition lowers the insured’s remaining life expectancy and 
hence reduces the number of years the annuity has to be paid. When this innovation 
was reported by this author in the newspaper Neue Zürcher Zeitung (NZZ), no fewer 
than three managers representing different divisions of the same (!) insurer called, 
keen to know details. At a quickly arranged meeting, they committed to reaching a 
decision within three months as to whether their company would launch a similar 
innovation. Well, as stated above, this was 10 years ago, and the company is still 
deciding…

Admittedly, launching an innovation in insurance is not easy. It is more than 
risky. It is uncertain because crucial probabilities are not sufficiently known:

• The new product may attract unfavourable risks, aggravating the adverse selec-
tion problem. In the example cited above, the condition causing the reduction in 
remaining life expectancy might be negatively correlated with other health con-
ditions, which counteract the shortening of life expectancy. However, if all we 
know is that the coefficient of correlation is less than 0.5 (say), the information is 
too weak to be of value in conventional approaches.

• In non-life insurance, very high losses are too rare to enable estimation of their 
probability of occurrence with a sufficient degree of precision. This means that 
reserves allocated to that particular line are insufficient with a probability of at 
least 5% (say); again, very weak information.

• Sometimes, a block of policies can be acquired from another company. The 
issue then arises as to whether these policies increase overall risk exposure or 
help diversify risk. The information available suggests that risk diversification is 
more probable than increased risk exposure; this is not sufficient to reach a well-
founded decision.

• For the bottom line, the rate of return that can be achieved on capital invest-
ment is crucial. Forward guidance by the Federal Reserve and the European Cen-
tral Bank may be lacking, as these institutions do not firmly commit to a future 
policy. However, they may indicate that a continuation of their zero interest rate 
policy is not very likely (say); once again, weak information.
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All these instances are subject to at least partial uncertainty in the sense of 
Knight (1921), who first distinguished between risk and uncertainty. In the case of 
risk, probabilities are known; in the case of complete uncertainty, they are unknown. 
However, in many cases relevant for insurance, experience and research yield at least 
some information, which arguably can and should be exploited for decision-making.

In the case of true uncertainty, one is thrown back to following Wald (1945), who 
viewed nature as an adversary to human decision-makers. In this situation, only the 
pessimistic maximin decision rule appropriate for zero-sum games can be applied. 
If at least the intervals in which the payoffs (i.e. the outcomes expressed in money 
units) lie are known with certainty, the Hurwicz criterion (Hurwicz 1951) is recom-
mended. It proposes using a linear combination of the maximin and the maximax 
values, with the weight of the maximax value (the highest of all possible maxima) 
reflecting the decision-maker’s degree of optimism.1 The downside of this alterna-
tive is that the optimism parameter is purely subjective.

Rather than discussing additional decision-making criteria [see Gilboa (2013), in 
particular chapters 7 and 15–17 for a survey], this contribution presents the theory of 
linear partial information (LPI) as a way to bridge the gap between uncertainty and 
risk. LPI theory, pioneered by Kofler and Menges (1977), can deal with any linear 
information about probabilities and payoffs (imprecise intervals can be expressed in 
terms of restrictions on probabilities) and does not require any subjective weighting 
parameter. The price to be paid is the assumption that the decision-maker is engaged 
in a game against nature. Since her survival is assured, nature need not be fully 
adversarial by always choosing the outcome that inflicts maximum loss on the deci-
sion-maker. Nature is adversarial to the extent that she presents the decision-maker 
with the urn containing the probability distribution with the minimum expected pay-
off. Accordingly, the LPI decision rule is the maxEmin criterion, a natural relaxation 
of Wald’s maximin criterion.

Kofler and Menges (1977) were able to show that a piece of information regard-
ing probabilities of possible outcomes such as r1 ≥ r3 (with r1 + r2 + r3 + ··· rn = 1) can 
be systematically exploited for decision-making. LPI theory has led to a series of 
publications, notably by Kofler and Menges (1979), Kofler (1988) and Kofler and 
Zweifel (1988, 1991, 1993).

LPI theory is just one alternative for dealing with what is commonly called ambi-
guity. A natural idea is to define probabilities over probabilities, e.g. over r1, such 
as Prob(r1 = 0.9) = 0.1, Prob(r1 = 0.8) = 0.1, Prob(r1 = 0.7) = 0.2, Prob(r1 = 0.6) = 0.3, 
etc. The resulting unambiguous probability distribution, e.g. r1 = 0.7, r2 = 0.3, could 
then be used to calculate the insurer’s expected profit. However, actual decision-
makers were soon found to evaluate the original compound lottery in a different way 
from the reduced one (Bar-Hillel 1973). This finding led to an extended literature 
on the axioms necessary to preserve the equivalence between the two settings and 
the importance of ambiguity aversion in the event these axioms are not satisfied. An 

1 The Hurwicz criterion can be used to explain why consumers often purchase full insurance despite 
the fact that premiums contain a positive proportional loading, contrary to conventional theory based on 
expected utility (Briys and Loubergé 1985).
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elegant solution was proposed by Klibanoff et al. (2005), who introduce two trans-
formations. One is the well-known risk utility function, which reflects the probabili-
ties, the other, a transformation defined over these probabilities, reflects the deci-
sion maker’s ambiguity aversion. Yet, as the authors’ (Klibanoff et al. 2012) lengthy 
reply to a critique by Epstein (2010) shows, the construction of the convolution of 
these two transformations is anything but straightforward. As will become evident in 
the next section, LPI theory offers a much simpler, practical alternative.

Applying LPI theory to a decision‑making situation at an innovating 
insurance company

In this contribution, LPI theory is applied to the decision-making situation of an 
insurance company that considers launching a new product such as the pension plan 
with payment adjusted for changes in remaining life expectancy described in the 
previous section (see Fig. 2 below for the pertinent decision tree).

Calculating the minimum expected payoff if the innovation 
is launched

As always, the decision tree is solved backwards, starting with its upper branch 
where the insurance company (IC for short) launches the innovation. At the market 
level, let r1 = probability of a favourable reception of the innovation, r2 = probabil-
ity of a neutral reception, and r3 = probability of an unfavourable reception. If the 
regulatory authority R approves and competitor C abstains from launching its own 
innovation, then let the respective payoffs be USD million {100, 50, 10} in present 
value terms.2 These figures are realistic in view of the fact that the annual premium 
incomes of major insurers are in USD tens of billions (Statista 2019).

As to the probabilities, let the only available information be r1 ≥ r3, which pre-
cludes calculation of an expected payoff value using traditional approaches. How-
ever, LPI can be used to calculate the so-called maxEmin value as a guide for deci-
sion-makers, as will be shown below.

The first step is to identify the relevant probability distributions. In the left-hand 
panel of Fig. 1, each point on the triangular plane defined by r1 + r2 + r3 = 1 reflects a 
distribution. The shaded triangular plane represents those distributions which satisfy 
the restriction, r1 ≥ r3. In the right-hand panel, the same plane is shown as a triangle 
confined by the vertices ABD. Evidently, all points contained in the triangular area 
ABD represent distributions that satisfy r1 ≥ r3.3 Note that this set is still infinite. 

2 Uncertainty concerning the values of these payoffs can be introduced as well, e.g. by LPI: q1(50 < P > 1
00) < q2(10 < P < 50), q1 + q2 = 1, with q1 and q2 denoting probabilities and P denoting the payoff.
3 For a generalisation to n-dimensional space, see the theorem in Hadley (1961, 179). It states that a 
system of k inequalities must satisfy k restrictions (including the summation restriction) as equalities for 
obtaining a base in a linear programme and hence a vertex point.
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However, it can be reduced to a finite number of elements at the price of the follow-
ing assumption. The decision-maker is engaged in a game against nature, which is 
zero-sum in expected values, calling for application of the maxEmin decision rule.

The maxEmin criterion is an intuitive generalisation of the pessimistic maximin 
criterion, where the decision-maker assumes that nature (or an adversary more gen-
erally) always chooses the action which has minimum payoff to him or her. Apply-
ing Wald’s (1945) maximin criterion ensures the decision-maker’s survival in a fully 
hostile environment. However, nature, acting as one’s adversary, will always survive 
so has no need to consistently opt for the action inflicting the greatest possible loss 
to the human decision-maker. Rather, she can afford to confront him or her with the 
probability distribution giving rise to the minimum expected payoff. Among these 
relevant distributions, the decision-maker can opt for the one that guarantees the 
maximum payoff on expectation through his or her choice of action. This amounts to 
applying the maxEmin criterion.

Applying the maxEmin criterion has a crucial benefit. Since nature can be 
assumed to be risk neutral, her preferences are in terms of expected values, which 
are linear functions of probabilities. This makes her indifference curves linear, as 
shown by the dashed lines on the right-hand side of Fig.  1. However, she cannot 
reach point C with the distribution (0,0,1) in view of the LPI: r1 ≥ r3. Her optimum 
cannot be in the interior of ABD either but must lie at one of its vertices ABD.4 This 
follows from the fundamental equivalence between a zero-sum game and a linear 
programme (Chiang 1984, Sect. 21.4). The optimum solution to a linear programme 
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Fig. 1  The set of relevant probability distributions in three-dimensional and two-dimensional space

4 Since nature’s preferences are linear, the decision-maker’s solution to the linear programme (see fn. 3) 
corresponds to nature’s solution of the dual due to the equivalence of a zero-sum game and a linear pro-
gramme. Therefore, nature necessarily selects a vertex point (Intriligator 1971, p. 75).
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is given by one of the extreme points of the feasible region (Chiang 1984, Theo-
rem II in Sect. 18.3). These extreme points (vertices) satisfy the condition that for a 
k-dimensional feasible space, the number of restrictions satisfied as exact equalities 
is also k (Chiang 1984, Sect. 18.4; also see fn. 3).

In the present context, n = 3; therefore, it is sufficient to consider the vertices A, B 
and D, where the restrictions r1 ≥ r3 and r1 + r2 + r3 = 1 are satisfied as equalities. The 
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Fig. 2  Decision-making situation at the innovating insurance company
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vertices characterising the relevant probabilities at the market level can be assem-
bled in the matrix V[M]:

Hence, the relevant expected payoffs EP at node M1 of Fig. 2 are (minimum 
underscored)

Given that nature is antagonistic, she will choose the distribution associated 
with the minimum expected payoff. The value of the game to the decision-maker 
(prior to deducting the outlay on product development) is therefore USD 50 mil-
lion (entered at node M1 in Fig. 2).

However, C may launch a similar innovation of its own. In that event, a stand-
ard assumption is that the market is split in half between the two competitors as 
long as their products are not strongly differentiated, following Hotelling (1929) 
and Salop (1979). Therefore, payoffs to the IC are reduced to USD million {50, 
25, 5}, giving rise to expected payoffs at node M2

with a minimum value of USD 25 million.
To calculate the minimum expected value of its payoff at node C1, the IC needs 

an estimate of the likelihood of C successfully launching an innovation of its 
own. This is strategic information that is not easy to come by. So, let the best esti-
mate be at least 80% probability of C going ahead, implying sa < 0.2 for absten-
tion. In the left panel of Fig. 3, the pertinent vertices C, B and D are shown in 
two-dimensional space; in the right panel, they appear in one-dimensional space. 
Therefore, the relevant vertices are given by
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with the minimum equal to USD 25 million. The qualification ‘successfully’ points 
to a shortcut in the analysis. In fact, C also needs to obtain approval by R, which is 
uncertain. However, in the spirit of the maxEmin principle, approval is taken as a 
given, constituting the worst-case scenario for the IC.

Up to this point, the regulatory authority R was assumed to approve the IC’s 
innovation. Even if C abstains from launching its own innovation, the IC will have 
no extra premium income if approval is denied. With payoffs equal to zero, the 
expected values of the game at node M3 are given by

with the minimum equal to zero. However, C might come up with its own innova-
tion; if C is of a similar size as the IC and obtains approval, it will garner the same 
payoffs in USD million {100, 50, 10} as the IC. According to the Hotelling–Salop 
rule, one half amounts to forgone premium income for the IC, which constitutes an 
opportunity cost to it. Using the same vertices as in Eq.  (1), one thus obtains the 
expected payoffs to the IC at node M4

with a minimum of USD − 50 million.
For calculating expected payoffs at node C2, where approval of its new product 

is denied, the IC needs to take into account that this failure will encourage competi-
tor C to go ahead. Still, there may be considerations preventing C from proceeding, 
resulting in a probability of launch of less than one. Assuming that the probability of 
abstention s′

a
 is less than 10% in this situation, one has the restrictions s′

a
< 0.1 and 

s
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= 1. Therefore, the vertices at node C2 are, in analogy to Fig. 3,
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 giving rise to relevant expected payoffs

and a minimum value of USD − 50 million at node  C2.
Next, the IC has to gauge the likelihood of attaining approval by the regulatory 

authority R. An important consideration in the present context is that the IC needs 
information from a health insurer concerning the occurrence of the condition and 
its precise nature in order to estimate the reduction in remaining life expectancy. 
However, health insurance is at least as strictly regulated as pension insurance, mak-
ing approval uncertain. For concreteness, let the perceived likelihood of approval 
be between 50% and 75%, respectively. With the pertinent vertices, one obtains 
expected payoff values at node r1

Therefore, the minimum expected payoff pertaining to the upper branch of the deci-
sion tree in Fig. 2 (launch) amounts to USD − 12.5 million. It should be noted that 
this is an assured minimum payoff from the product innovation, but still in terms of 
expected value.

The lower branch of Fig. 2 is evaluated in the Appendix. The guaranteed expected 
payoff in the case that the innovation is not launched amounts to USD − 37.5 million.

Applying the maxEmin decision rule

Under the maxEmin decision rule introduced in the previous section, the optimal deci-
sion for the IC is unambiguous, in spite of the imprecise value of the probabilities 
involved. It makes sense to launch the innovation and to incur an expected negative 
payoff of USD − 12.5 million unless product development costs at least USD 25 mil-
lion because not launching the innovation would be associated with an even greater loss 
of USD − 37.5 million. It is therefore preferable to launch the innovation.

Evidently, the same type of LPI procedure can be applied to the other problems con-
fronting insurers cited in the Introduction.

Limitations and extensions of LPI theory

The most important limitation of LPI theory is the lack of evidence concern-
ing application of the maxEmin decision rule. Other criteria that do not rely 
on knowledge of probabilities (contrary to expected utility theory) have been 
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examined, at least experimentally. While Wald’s (1945) maximin rule does not 
seem to have been confronted with empirical evidence, the less pessimistic maxi-
min regret rule has been at least partially confirmed by Zeelenberg and Pieters 
(2004) and Filiz-Ozbay and Ozbay (2007) in the context of auctions. There, the 
successful bidder often realises that he or she paid too much, motivating the mini-
misation of the maximum divergence between his or her decision and the truly 
optimal one (Niehans 1948; Savage 1951).

Another approach to partial information regarding probabilities and payoffs is 
ambiguity (Schmeidler 1989). The effect of ambiguity on decision-making has 
been confirmed experimentally by Kelsey and le Roux (2018) in the context of 
the so-called battle of the sexes, a two-person zero-sum game. Avoidance of 
ambiguity is shown to have positive value to the players. Arguably, this provides 
indirect support to LPI theory, which provides a measure of the value of informa-
tion (and hence willingness to pay for the avoidance of ambiguity). To illustrate, 
let it be known that the probability of the IC obtaining regulatory approval is pre-
cisely 75% rather than between 50% and 75% (for simplicity, minimum expected 
payoffs are retained at M1 to M4 as well as C1 and C2). Then, the expected payoff 
at node r1 amounts to

Evidently, the removal of ambiguity would turn the innovation into a profitable 
investment in expected value terms. Under the maxEmin rule, the avoidance of 
ambiguity is worth USD 6.25 million [= 6.25 − (− 12.5)] on expectation.

As to extensions, LPI theory allows one to render all the elements of the decision 
tree of Fig. 2 uncertain or more uncertain. Starting with the payoffs, the figure 100 at 
the top can be replaced by e.g. {110, 90} with probabilities q1 and q2, where 2q1 < q2 
(say). In Fig.  2, this would call for a set of additional nodes under the control of 
nature with vertices {[1/3, 2/3]′, [0, 1]′}. Of course, uncertainty with regard to the 
development cost of the new product can be introduced in the same way.

Next, there may be several sources of information characterised by their respec-
tive credibility, as in Kofler and Zweifel (1988). For instance, a market research firm 
might come up with the pessimistic prediction r1 < r3, indicating that an unfavour-
able market response is more likely than a favourable one. The management of the 
IC then needs to come up with a (usually rather subjective) estimate of the likeli-
hood that this information, rather than the original, is true. Typically, this estimate 
will be in the guise of an LPI associated with still another set of nodes under the 
control of nature. The dynamic integration of new information can also be modelled 
as a Bayesian process resulting in an a priori and an a posteriori LPI, as in Kofler 
and Zweifel (1993).

In addition, there may be more than one competitor, each characterised by its own 
LPI regarding the probability of launching an innovation. This calls for the convo-
lution of LPIs at node C1 in Fig.  2, as expounded in Kofler and Zweifel (1991). 
Finally, the IC may consider investing its funds in something else, giving rise to an 
entire decision tree of its own. This alternative will also typically be fraught with 
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uncertainties, which can be modelled using LPI theory and calls for a whole set of 
convolutions.

Concluding remarks

This contribution is clearly ‘outside the box’ of risk theory and the economics of 
insurance but it might have pleased Orio Giarini. It proposes the analysis of LPI in a 
situation between uncertainty, defined as partial or complete ignorance of probabili-
ties of occurrence, and risk, where probabilities are known to the decision-maker. 
The example used is that of an insurance company that considers launching an inno-
vative product but cannot gauge precisely the likelihood of a favourable reception 
by the market, the probability of a competitor launching its own innovation or the 
chance of approval by the regulatory authority. Nevertheless, LPI theory provides 
ambiguous advice to the management of the company—provided they are prepared 
to accept the so-called maxEmin criterion in a game against nature. The assump-
tion is that nature presents humans with the probability distribution entailing the 
maximum expected payoff to herself and hence the minimum payoff to the deci-
sion-maker. The decision-maker in turn opts for the action that maximises his or her 
expected payoff.

LPI theory can be extended to cover ambiguity with regard to payoffs to and costs 
of an innovation, integrating additional information of limited credibility, learning 
from it, ambiguity with regard to the number of competitors and their intentions, 
and investment in another possible project with uncertain prospects. The one ele-
ment currently lacking is experimental evidence concerning the actual use of the 
maxEmin principle, comparing it to expected utility (profit, respectively), maximin 
regret and maximin decision rules. Hopefully this contribution will motivate future 
research in this direction!

Appendix

This appendix contains the calculations pertaining to the lower branch of Fig.  2, 
where the IC decides not to launch the new product. In this case, the next move per-
tains to C, who decides whether or not to launch its own.

Starting to solve the decision tree at the market level again, note that if competitor 
C abstains from launching as well, approval of its innovation by R does not matter 
from the IC’s point of view. Since both extra and forgone premium income accruing 
to the IC are zero at nodes M5 and M6, the expected payoffs at node R3 are

with a minimum of zero.
At node M7, competitor C has obtained approval for its product. The situation 

for the IC is similar to that at M4, the difference being that at M4 the IC launches its 

(12)EP
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R3

]
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0
−−
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innovation but fails to obtain approval by the regulatory authority R. From the con-
sumer’s point of view, this difference is unlikely to matter, which justifies entering 
the same payoffs and using the same vertices. Expected payoffs to the IC are there-
fore given by

with a minimum of USD − 50 million.
However, R may deny approval to C. In that event, the IC is unaffected, regard-

less of reception by the market, causing expected payoffs at M8 to be

with the minimum equal to zero.
Assuming that R treats the two competitors equally, the probability of approval 

again lies between 50% and 75% as at node r1, giving rise to expected payoffs at R4 
of

For the IC, the value of the game at node R4 therefore amounts to USD − 37.5 
million.

Given that the IC decides not to launch its innovation, there is little to prevent C 
from going ahead. Arguably, its propensity to act is the same at node C2, where the 
IC failed to obtain regulatory approval. Using the same vertices, one has

with the minimum expected payoff to the IC amounting to USD − 37.5 million.
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