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The geometric process has attracted extensive research attention from authors in reliability mathematics since its
introduction. However, it possesses some limitations, which include that: (1) it can merely model stochastically
increasing or decreasing inter-arrival times of recurrent event processes and (2) it cannot model recurrent event
processes where the inter-arrival time distributions have varying shape parameters. Those limitations may prevent
it from a wider application in the real world. In this paper, we extend the geometric process to a new process, the
doubly geometric process, which overcomes the above two limitations. Probability properties are derived, and
two methods of parameter estimation are given. Application of the proposed model is presented: one is on fitting
warranty claim data, and the other is to compare the performance of the doubly geometric process with the
performance of other widely used models in fitting real-world datasets, based on the corrected Akaike
information criterion.
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1. Introduction

1.1. Motivation

Since its introduction by Lam (1988), the geometric process

(GP) has attracted extensive research attention. A considerable

bulk of research on the GP, including more than 200 papers and

one monograph (Lam, 2007), has been published. For example,

the GP has been applied in system reliability analysis (Yuan and

Meng, 2011; Jain and Gupta, 2013), maintenance policy

optimisation (Zhang et al, 2002; Liu and Huang, 2010; Wang,

2011; Zhang et al, 2013), warranty cost analysis (Chukova

et al, 2005), modelling of the outbreak of an epidemic disease

(Chan et al, 2006), and modelling of electricity prices (Chan

et al, 2014). In the meantime, some authors propose extended

models to overcome the limitations of the GP (Finkelstein,

1993; Wang and Pham, 1996; Braun et al, 2005; Chan et al,

2006; Wu and Clements-Croome, 2006).

The GP is a stochastic process that is defined as (Lam,

1988): a sequence of random variables fXk; k ¼ 1; 2; . . .g is a

GP if the cdf (cumulative distribution function) of Xk is given

by Fðak�1tÞ for k ¼ 1; 2; . . . and a is a positive constant.

As can be seen, the distinction between the GP and the

renewal process lies in the fact that the inter-arrival times of

the renewal process have the same distribution F(t) over k’s

and the inter-arrival times of the GP have a cdf Fðak�1tÞ,
which changes over k’s. In some scenarios such as reliability

mathematics, this distinction makes the GP more attractive in

application as it can model the failure process of ageing or

deteriorating systems, which may have decreasing working

times between failures.

While the GP is an important model and has been widely

used in solving problems in various research areas, its scope is

still limited and does not fit the purposes of various empirical

studies. First, this model is not suitable for a stochastic process

in which the inter-arrival times may need to be modelled by

distributions with varying shape parameters. Second, it can

merely describe stochastically increasing or decreasing

stochastic processes. This paper aims to propose a new

process that can overcome those two limitations and to study

its probabilistic properties.

1.2. The geometric process and related work

This section introduces the GP and discusses its limitations in

detail. We begin with an important definition on stochastic

order.

Definition 1 Stochastic order (p. 404 in Ross (1996)).

Assume that X and Y are two random variables. If for

every real number r, the inequality

PðX� rÞ�PðY � rÞ

holds, then X is stochastically greater than or equal to Y,

or X� stY . Equivalently, Y is stochastically less than or

equal to X, or Y � stX.
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From Definition 1, one can define the monotonicity

of a stochastic process: Given a stochastic process

fXk; k ¼ 1; 2; . . .g, if Xk � stXkþ1 (Xk � stXkþ1) for

k ¼ 1; 2; . . ., then fXk; k ¼ 1; 2; . . .g is said stochastically to

be increasing (decreasing).

Lemma 1 (p. 405 in Ross (1996)) Assume that X and Y are

two random variables, then

X� stY if only if E½uðXÞ� �E½uðYÞ�;

for all increasing functions u(.).

Lam proposes the definition of the GP, as shown below

(Lam, 1988).

Definition 2 (Lam, 1988) Given a sequence of non-negative

random variables fXk; k ¼ 1; 2; . . .g, if they are indepen-

dent and the cdf of Xk is given by Fðak�1xÞ for

k ¼ 1; 2; . . ., where a is a positive constant, then fXk; k ¼
1; 2; . . .g is called a geometric process (GP).

We refer to the random variable Xk as the kth inter-arrival

time in what follows.

Remark 1 From Definition 1 and Lemma 2, we have the

following results.

• If a[ 1, then fXk; k ¼ 1; 2; . . .g is stochastically

decreasing.

• If a\1, then fXk; k ¼ 1; 2; . . .g is stochastically

increasing.

• If a ¼ 1, then fXk; k ¼ 1; 2; . . .g is a renewal process

(RP).

• If fXk; k ¼ 1; 2; . . .g is a GP and X1 follows the

Weibull distribution, then the shape parameter of Xk

for k ¼ 2; 3; . . . remains the same as that of X1. This

observation is not specific to the Weibull distribution

and holds for many other distributions with a scale and

shape parameter such as the Gamma distribution.

The GP offers an alternative process to model recurrent

event processes. For example, in reliability mathematics, the

renewal process (RP) and the non-homogeneous Poisson

process (NHPP) are two widely used stochastic processes.

The RP is normally used to model working times of a system if

the system is renewed (or replaced with new and identical

items upon failures) and the NHPP is used to model working

times of a system where a repair restores the system to the

status just before the failure happened, i.e. the repair is a

minimal repair. Those assumptions of the RP and the NHPP

may be too stringent in real applications. On the other hand,

repairing a given item may have a limited number of methods,

which implies that repair effect on the item is not random

(Kijima, 1989). Meanwhile, the reliability of the item may

decrease over time. Considering those facts, time between

failures may therefore become shorter and shorter. The GP can

model time between failures of such items.

Meanwhile, some authors either proposed similar definitions

to that of the GP (Finkelstein, 1993; Wang and Pham, 1996) or

made an attempt to extend the GP (Braun et al, 2005; Wu and

Clements-Croome, 2006; Lam, 2007). Those different versions

can be unified as: they replace ak�1 with g(k), where g(k) is a

function of k and is defined differently by different authors, as

discussed below.

For a sequence of non-negative random variables

fXk; k ¼ 1; 2; . . .g, different consideration has been laid on

the distribution of Xk, as illustrated in the following (in

chronological order).

(i) Finkelstein (1993) proposes a process, named the

general deteriorating renewal process, in which the

distribution of Xk is FkðxÞ, where Fkþ1ðxÞ�FkðxÞ. A
more specific model is defined such that FkðxÞ ¼
FðakxÞ where 1 ¼ a1 � a2 � a3 � . . . and ak are param-

eters. In this model, gðkÞ ¼ ak.

(ii) Wang and Pham (1996) defines a quasi-renewal process,

which assumes X1 ¼ W1, X2 ¼ aW2, X3 ¼ a2W3; . . .,

and theWk are independently and identically distributed

and a[ 0 is constant. Here, gðkÞ ¼ a1�k.

(iii) Braun et al (2005) propose a variant, which assumes that

the distribution of Xk is FkðxÞ ¼ Fðk�axÞ, or gðkÞ ¼ k�a.

The authors proved that the expected number of event

counts before a given time, or analogously, the mean

cumulative function (MCF) (or, the renewal function),

tends to infinite for the decreasing GP. As such, they

propose the process as a complement.

(iv) Wu and Clements-Croome (2006) set gðkÞ ¼ aak�1þ
bbk�1, where a, b, a and b are parameters. Their

intention is to extend the GP to model more compli-

cated failure patterns such as the bathtub shaped failure

patterns.

(v) Chan et al (2006) extend the GP to the threshold GP: A

stochastic process fZn; n ¼ 1; 2; :::g is said to be a

threshold geometric process (threshold GP), if there

exists real numbers ai [ 0; i ¼ 1; 2; :::; and integers

f1 ¼ M1\M2\. . .g such that for each i ¼ 1; 2; . . .,

fan�Mi

i Zn;Mi � n\Miþ1g forms a renewal process.

Apparently, the model proposed in Finkelstein (1993) has a

limitation in common: there is a need to estimate a large number

of parameters, which may be problematic in real applications as

a large number of failure data are needed to estimate the

parameters. It should be noted that it is notoriously difficult to

collect a large number of failure data in practice.

1.3. Comments on the geometric process and its extensions

While the GP is an important model and widely used, its scope

is still limited and does not fit the purposes of various

empirical studies due to the following two limitations.
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• Invariance of the shape parameter Suppose the cdf FkðxÞ
of Xk in the GP have a scale parameter and a shape

parameter. Then, all of the above discussed GP-like

variants and extensions implicitly make an assumption:

the processes merely change the scale parameter of

FkðxÞ, but keep their shape parameter constant over k’s.

In other words, none of the existing GP-like processes

can model a recurrent event process whose shape

parameter of FkðxÞ changes over k. To elaborate, let us

take the Weibull distribution as an example. Assume that

the cdf of X1 is FðxÞ ¼ 1� e
�ð x

h1
Þh2
. Then according to

the GP-like processes, the cdf of Xk is

FðgðkÞxÞ ¼ 1� expf�ð x
h1g�1ðkÞÞ

h2g. That is, the scale

parameter h1g�1ðkÞ is a function of k and it changes

over k’s, but the shape parameter h2 is independent of

k and remains constant over different k’s. This assump-

tion may be too stringent and should be relaxed for a

wider application. To this end, one may assume a natural

extension of the GP, in which Xk has a cdf FðgðkÞxhðkÞÞ,
where h(k) is a function of k and the parameters in

h(k) are estimable. As a result, in the Weibull distribu-

tion case, for example, the inter-arrival times, Xk’s,

may be fitted with cdf FðgðkÞxhðkÞÞ ¼ 1�

expf�ð x

ðh1g�1ðkÞÞ1=hðkÞ
Þh2hðkÞg:

A similar description of the above paragraph is the

invariance of the CV (coefficient of variation). Assume

that fX1;X2; . . .g follows the GP. Denote k11 ¼ E½X1�
and k21 ¼ E½X2

1 � � k211. Then it is easy to obtain the

expected value and the variance of Xk: E½Xk� ¼ að1�kÞk11
and V½Xk� ¼ að2�2kÞk21; respectively. The coefficient of

variation (CV) of Xk is therefore given by

ck ¼
ffiffiffiffiffiffiffiffiffi

V½Xk �
p
E½Xk � ¼

ffiffiffiffiffiffiffi

k21
p

=k11, which suggests that the CVs

are independent of k and keep constant over k’s.

An example of such a process with varying shape

parameters in FkðxÞ can be found in Chan et al (2006),

in which Xk are the number of daily infected cases of an

epidemic disease (i.e. the severe acute respiratory

syndrome) in Hong Kong in 2003 are assumed to be

independent and follow the threshold geometric process,

in which FkðxÞ have different shape parameters for

k ¼ 1; 2; . . ..

• Monotonicity of the GP From Remark 1, the GP fXk; k ¼
1; 2; . . .g change monotonously. That is, it can merely

model the processes with increasing or decreasing inter-

arrival times, or renewal processes. It is known, however,

that the inter-arrival time processes of some real-world

systems may exhibit non-monotonous failure patterns. For

those systems, using the GP to model their failure

processes is apparently inappropriate.

1.4. Contribution and importance of this work

This paper proposes a new stochastic process, the doubly

geometric process (DGP), which makes contribution to the

literature in the following aspects.

• First, the DGP can model recurrent event processes where

FkðxÞ’s have different shape parameters over k’s, which

can be done by neither the GP-like models nor other repair

models such as reduction of age models discussed in

Doyen and Gaudoin (2004). One may note that the DGP

differs from the research that treats the parameters in a

lifetime distribution as functions of time (Zuo et al, 1999).

• Second, the DGP can model not only monotonously

increasing or decreasing stochastic processes, but also

processes with complicated failure intensity functions such

as the bathtub shaped curves and the upside-down bathtub

shaped curves, as can be seen from examples shown in

Figure 1. Noteworthily, although the models proposed by

Wu and Clements-Croome (2006) and Chan et al (2006)

can also model complicated failure intensity functions,

they assume that FkðxÞ’s have constant shape parameters

over k’s and they need more parameters than the DGP (i.e.

the DGP needs 2 parameters, whereas the models proposed

by Wu and Clements-Croome (2006) and Chan et al

(2006) need at least 3 parameters).

• Third, as Braun et al (2005) points out, the GP has a

limitation that it only allows for logarithmic growth or

explosive growth. The DGP can overcome this limitation.

One may also notice that, in recent years, many authors have

devoted considerable effort on developing novel methods to

model repair processes, see Wu and Scarf (2015), for example.

The current paper can of course be regarded as a new

contribution to the literature of modelling repair processes.

The paper has important managerial implications, as it

provides a more flexible model for wider application than the

GP. Although this paper uses cases from reliability engineer-

ing, its results and discussion can also be applied to analyse

other recurrent events. Such applications can be found in

scientific studies, medical research, marketing research, etc,

just as the GP can be used to model recurrent events such as

the outbreaks of diseases (Chan et al, 2006) and the electricity

price (Chan et al, 2014).

1.5. Overview

The rest of the paper is structured as follows. Section 2

introduces the DGP and discusses its probabilistic properties.

Section 3 proposes methods of parameter estimation. Sec-

tion 4 compares the performance of the DGP with that of other

models based on datasets collected from the real-world. We

finish with a conclusion and future work in Section 5.
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2. A doubly geometric process and its probabilistic
properties

In this section, we propose the following definition and then

discuss its statistical properties.

Definition 3 Given a sequence of non-negative random

variables fXk; k ¼ 1; 2; . . .g, if they are independent and

the cdf of Xk is given by Fðak�1xhðkÞÞ for k ¼ 1; 2; . . .,

where a is a positive constant, h(k) is a function of k and

the likelihood of the parameters in h(k) has a known

closed form, and hðkÞ[ 0 for k 2 N, then fXk; k ¼
1; 2; . . .g is called a doubly geometric process (DGP).

In the above definition, for the sake of simplicity, we call the

process as doubly geometric process since the process can include

two geometric processes: fak�1; k ¼ 1; 2; . . .g is a geometric

series and fhðkÞ; k ¼ 1; 2; . . .g can be a geometric series.

We refer to ak�1 as the scale impact factor and h(k) as the

shape impact factor. It should be noted that the cdf of X1 is

F(x).

Remark 2 Similar to the definition of the quasi-renewal

process given by Wang and Pham (1996), one may give

an alternative definition of Definition 3 as: assume

X1 ¼ W1, X2 ¼ ða�1W2Þ1=hð1Þ, ..., Xk ¼ ða1�kW2Þ1=hðkÞ; . . .
and the Wk are i.i.d., then the process fXk; k ¼ 1; 2; . . .g is

called a doubly geometric process.

Although the extension from the GP to the DGP seems quite

natural, it may create difficulties in mathematical derivation.

For example, deriving some probability properties of the DGP

becomes much more complicating than that of the GP, it is

difficult to derive a closed form of the MCF for the DGP,

whereas an explicit iteration equation of the MCF for the GP

can be derived.

Remark 3 From Definition 3, it follows the results below.

(i) If hðkÞ ¼ 1, then fXk; k ¼ 1; 2; . . .g reduces to the

geometric process.

(ii) Denote k1k ¼ E½Xh�1ðkÞ
1 � ¼

R1
0

xh
�1ðkÞf ðxÞdx and

k2k ¼ E½X2h�1ðkÞ
1 � ¼

R1
0

x2h
�1ðkÞf ðxÞdx, where

f ðxÞ ¼ oFðxÞ=ox exists and h�1ðkÞ ¼ 1
hðkÞ. Assume

that E½Xh�1ðkÞ
1 �\1 and E½X2h�2ðkÞ

1 �\1. Then it is

easy to obtain the expected value and the variance

of Xk: E½Xk� ¼ að1�kÞh�1ðkÞk1k and V½Xk� ¼
að2�2kÞh�1ðkÞk2k � k21k for k ¼ 1; 2; . . .:

Figure 1 DGPs with different parameter settings. a a ¼ 0:97; b ¼ �0:05; h1 ¼ 40 and h2 ¼ 0:6. b a ¼ 1:1; b ¼ 0:2; h1 ¼ 40 and
h2 ¼ 0:6. c a ¼ 0:92; b ¼ 0:4; h1 ¼ 40 and h2 ¼ 0:6. d a ¼ 1:02; b ¼ �0:3; h1 ¼ 40 and h2 ¼ 0:6.
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(iii) If X1 follows the exponential distribution and

(a) if fXk; k ¼ 1; 2; . . .g follows the GP, then Xk (for

k ¼ 2; 3; . . .) follows the exponential distribu-

tion with different rate parameters from that of

X1,

(b) if fXk; k ¼ 1; 2; . . .g follows the DGP, then Xk

(for k ¼ 2; 3; . . .) follows the Weibull

distribution,

(iv) If fXk; k ¼ 1; 2; . . .g follows the DGP and X1 fol-

lows the Weibull distribution, then Xk (for k[ 1)

follows the Weibull distribution with different

shape and scale parameters from those of X1.

If we assume that fX1;X2; . . .g follows the DGP, then from

(ii) in Remark 3, the coefficient of variation (CV) of Xk is

ck ¼
ffiffiffiffiffiffiffiffiffi

V½Xk �
p
E½Xk � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

að2�2kÞh�1ðkÞk2k�k21k
p

að1�kÞh�1ðkÞk1k
, which implies that the CVs

change over k’s. Hence, we can make the following

conclusion.

Lemma 2 Suppose that fXk; k ¼ 1; 2; . . .g is a GP, then the

coefficient of variation (CV) of Xk changes over k’s.

Now a question arisen is the selection of the forms of h(k).

In what follows, we investigate the DGP with the h(k) defined

below:

hðkÞ ¼ ð1þ logðkÞÞb; ð1Þ

where log is the logarithm with base 10 and b is a parameter.

2.1. Probabilistic properties of the DGP

with hðkÞ ¼ ð1þ logðkÞÞb

In this entire section, i.e. Section 2.1, we assume

hðkÞ ¼ ð1þ logðkÞÞb.
The reason that we select hðkÞ ¼ ð1þ logðkÞÞb is: we have

fit the DGP with different h(k), which are bk�1, blogðkÞ, and

1þ b logðkÞ, on ten real-world datasets (see Section 4) and

found that the DGP with hðkÞ ¼ ð1þ logðkÞÞb outperforms the

processes with the other three h(k)’s. In real applications, it is

suggested that other form of h(k) may also be investigated and

selected once a comparison on the performance of difference

h(k) has been made.

In selecting h(k), one may set some conditions, for example,

hð1Þ ¼ 1 and hðkÞ[ 0 for k ¼ 1; 2; . . ..

Unlike the GP that can only be either stochastically

increasing or stochastically decreasing, the DGP can model

more flexible processes, as shown in the four examples in

Figure 1.

Proposition 1 Given a DGP fXk; k ¼ 1; 2; . . .g,

(i) if 0\a\1, PðX1 [ 1Þ ¼ 1, and b\0, then

fXk; k ¼ 1; 2; . . .g is stochastically increasing.

(ii) if a[ 1, Pð0\X1\1Þ ¼ 1, and b\0, then

fXk; k ¼ 1; 2; . . .g is stochastically decreasing.

(iii) if 0\a\1, Pð0\X1\1Þ ¼ 1, and

0\b\4:898226, then fXk; k ¼ 1; 2; . . .g is

stochastically increasing.

(iv) if a[ 1, PðX1 [ 1Þ ¼ 1, and 0\b\4:898226,

then fXk; k ¼ 1; 2; . . .g is stochastically

decreasing.

Proposition 2 Given a DGP fXk; k ¼ 1; 2; . . .g with

hðkÞ ¼ ð1þ logðkÞÞb, if ð1þ logðk þ 1ÞÞ�bðlogðyÞ �
k logðaÞÞ þ ð1þ logðkÞÞ�bððk � 1Þ logðaÞ � logðyÞÞ var-

ies between negative and positive values, then the DGP is

not stochastically monotonous over k’s, where y repre-

sents all the possible values on Xk (for k ¼ 1; 2; . . .Þ.

Stochastic ageing properties are widely discussed in the

reliability literature. For example, F(t) is IFR (increasing

failure rate) if
f ðtÞ
�FðtÞ is increasing in t for all t� 0, where f ðtÞ ¼

dFðtÞ
dt

and �FðtÞ ¼ 1� FðtÞ. With regard to the stochastic ageing

properties of the DGP, we have the following proposition.

Proposition 3 Suppose fXk; k ¼ 1; 2; . . .g follows the DGP.

If b[ 0 and F(t) is IFR, then the cdf FkðtÞ of Xk is IFR.

Suppose fXk; k ¼ 1; 2; . . .g follows the DGP, denote Sn �
Pn

k¼1 Xk with S0 � 0. Then the distribution of Sn is

PðSn � tÞ ¼ PðSn�1 þ Xn � tÞ

¼
Z t

0

Fðn�1Þðt � uÞdFnðuÞ

¼
Z t

0

Fðn�1Þðt � uÞ

an�1ð1þ logðnÞÞbuð1þlogðnÞÞb�1f an�1uð1þlogðnÞÞb
� �� �

du

¼
Z an�1tð1þlogðnÞÞb

0

Fðn�1Þ t � að1�nÞð1þlogðnÞÞ�b

vð1þlogðnÞÞ�b
� �

f ðvÞdv;

ð2Þ

where Fð0ÞðtÞ ¼ 1 and FðnÞðtÞ � PðSn � tÞ. Let

NðtÞ ¼ maxfn : Sn � tg, then the MCF, m(t), is given by

mðtÞ ¼ E½NðtÞ� ¼
X

1

n¼1

PðSn � tÞ: ð3Þ

Denote

m1ðtÞ ¼
X

1

n¼1

P
X

n

k¼1

Yk � t

 !

; ð4Þ

where fYk : k� 1g is a renewal process with Yk [ 0 and the

cdf of the inter-arrival times is F(x) (which has the same as the
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cdf of X1). Then, equivalently, m1ðtÞ is the MCF of the

ordinary renewal process fN1ðtÞ : t� 0g with N1ðtÞ �
maxfn :

Pn
k¼1 Yk � tg. For fYk : k� 1g, m1ðtÞ ¼ FðtÞþ

R t

0
m1ðt � yÞdFðyÞ, as can be seen in many textbooks of

stochastic processes (for example, see Ross (1996)).

Unlike the MCF, m1ðtÞ, for the ordinary renewal process

where an iteration equation can be given, deriving an iteration

equation for m(t) defined in Eq. (3) seems not an easy task. In

real applications, numerical analysis may be sought. For

example, on the four examples used in Figure 1, we run the

Monte Carlo simulation for 2000 times and estimate the values

of the MCF for each example. Figure 2 shows the values of the

MCF of the four examples with the parameter settings shown in

Figure 1.

Below, the lower bounds or the upper bounds are given for

two scenarios.

Proposition 4

(i) Given that m1ðtÞ and m(t) are defined in Eqs. (3)

and (4), respectively, if fXk; k ¼ 1; 2; . . .g is

stochastically non-decreasing, then

mðtÞ�m1ðtÞ: ð5Þ

(ii) Suppose that fXk; k ¼ 1; 2; . . .g follows the DGP

and PðXk\cÞ ¼ 1 for k ¼ 1; 2; . . . and c is a posi-

tive real number. Denote Kn ¼
Pn

k¼1 E½Xk� and

r2 ¼ 1
n

Pn
k¼1 V½Xk�: Assume that fXk; k ¼ 1; 2; . . .g

is stochastically non-increasing and t[ limn!1
Knð\þ1Þ, then

mðtÞ�max m1ðtÞ;
X

1

n¼1

1� exp �nr2

c2
H

ct� cKn

nr2

� �� �� �

( )

:

ð6Þ

The following proposition compares the MCFs of the GP

and the DGP.

Proposition 5 Suppose that fXg
k ; k ¼ 1; 2; . . .g is a GP with

X
g
k �Fðak�1xÞ and fXd

k ; k ¼ 1; 2; . . .g is a DGP with

Xd
k �Fðak�1xð1þlogðkÞÞbÞ. Denote mgðtÞ ¼

P1
n¼1 Pð

Pn
k¼1

X
g
k � tÞ and mdðtÞ ¼

P1
n¼1 Pð

Pn
k¼1 X

d
k � tÞ. Then,

(i) mgðtÞ[mdðtÞ if 0\a\1, b\0 and PðX1 [ 1Þ ¼ 1,

or if a[ 1, b[ 0 and Pð0\X1\1Þ ¼ 1.

(ii) mgðtÞ\mdðtÞ if 0\a\1, b[ 0 and PðX1 [ 1Þ ¼ 1,

or if a[ 1, b\0 and Pð0\X1\1Þ ¼ 1.

The following proposition compares the MCFs of two

DGPs.

Proposition 6 Suppose that fXd1
k ; k ¼ 1; 2; . . .g with

Xd1
k �Fðak�1

1 xð1þlogðkÞÞb1 Þ is a DGP and fXd2
k ; k ¼

1; 2; . . .g with Xd2
k �Fðak�1

2 xð1þlogðkÞÞb2 Þ is a DGP. Denote

md1ðtÞ ¼
P1

n¼1 Pð
Pn

k¼1 X
d1
k � tÞ and

md2ðtÞ ¼
P1

n¼1 Pð
Pn

k¼1 X
d2
k � tÞ.

(i) If a1 ¼ a2 and b1 [ b2,

•md1ðtÞ\md2ðtÞ if a[ 1 and Pð0\X1\1Þ ¼ 1,

•md1ðtÞ[md2ðtÞ if 0\a\1 and PðX1 [ 1Þ ¼ 1.

(ii) md1ðtÞ\md2ðtÞ if b1 ¼ b2 and a1 [ a2.

(iii) md1ðtÞ[md2ðtÞ if a2 [ a1 [ 1, b1 [ b2, and

PðX1 [ 1Þ ¼ 1.

(iv) md1ðtÞ\md2ðtÞ if 0\a1\a2\1, b1 [ b2, and

PðX1\1Þ ¼ 1.

Proposition 1 shows the monotonicity property of the DGP,

but it has not shown the convergence of the DGP in

probability. The following property addresses this issue.

Proposition 7 Given a DGP fXk; k ¼ 1; 2; . . .g,

(i) if 0\a\1, then then Xk converges to infinity in

probability as k ! 1,

(ii) if a[ 1, then Xk converges to zero in probability as

k ! 1.

2.2. Discussion

We make the following discussion.

• On the scale impact factor g(k) and the shape impact

factor h(k) Although we only discussed the DGP in which

the scale impact factor is set to gðkÞ ¼ ak�1, g(k) may also

be replaced with other forms of functions such as those

proposed in Finkelstein (1993), Braun et al (2005), Wu

and Clements-Croome (2006), Chan et al (2006). The

function hðkÞ ¼ ð1þ logðkÞÞb in Eq. (1) can be replaced

Figure 2 TheMCF,m(t), of the four examples shown in Figure 1.
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with any other functions of k, for example, hðkÞ ¼ bk�1, or

hðkÞ ¼ blogðkÞ etc. However, the propositions of DGPs with

different g(k) and h(k) are discussed in the following bullet.

• On the propositions Among the propositions discussed in

Section 2.1, Proportion 4 holds for any g(k) and hðkÞ[ 0 as

both g(k) and hðkÞ[ 0 are not involved in the proof process

of Proposition 4. But the other propositions are discussed for

the case where gðkÞ ¼ ak�1 and hðkÞ ¼ ð1þ logðkÞÞb.

3. Estimation of the parameters in the DGP

In this section, we discuss two methods of estimation of the

parameters in the DGP.

3.1. Least squares method

For the geometric process, Lam (1992) develops a method,

which is a least squares method, to estimate the parameters in

the GP. With a similar method, we estimate the parameters in

the DGP in this section.

Suppose that a process fXk; k ¼ 1; 2; . . .g follows the DGP

with Xk �Fðak�1xð1þlogðkÞÞbÞ. Let

Zk ¼ ak�1X
ð1þlogðkÞÞb
k : ð7Þ

Then fZk; k ¼ 1; 2; . . .g follows an ordinary renewal process.

Given observations xk of Xk (for k ¼ 1; 2; . . .), from Eq. (7),

we can have

l ¼ ak�1x
ð1þlogðkÞÞb
k þ ek ð8Þ

where l ¼ E½Zk� and ek are i.i.d. random variables each having

mean 0 and a constant variance.

When b 6¼ 0, it is not possible to linearise model (8) by

means of a suitable transformation, that is, model (8) is

intrinsically nonlinear.

For given observations xk of Xk (with k ¼ 1; 2; . . .;N0), one

can minimise the following sum of the squares of the errors to

estimate the parameters a, b and l.

ðl̂; â; b̂Þ ¼ argmin
l;a;b

X

N0

k¼1

xk � ðla1�kÞð1þlogðkÞÞ�b
� �2

: ð9Þ

Obviously, there is no general closed-form solution for l̂, â,

and b̂, one needs therefore pursue nonlinear programming

methods to solve the problem.

The reader is referred to Theorem 2.1 in page 24 in the book

by Seber and Wild (2003) for obtaining the asymptotic

distributions of ðl̂; â; b̂Þ.

3.2. Maximum likelihood method

Suppose that one observes N systems starting from time 0 until

time T. Assume that system j (j ¼ 1; 2; . . .;N) has failed for Nj

times at time points sj;k with k ¼ 0; 1; . . .;Nj. Let sj;0 ¼ 0.

Then the working times of system j are sj;1 � sj;0, sj;2 � sj;1,

. . ., sj;Nj
� sj;Nj�1, and T � sj;Nj

, respectively. Denote xj;i ¼
sj;i � sj;i�1 for i ¼ 1; 2; . . .;Nj and xj;Njþ1 ¼ T � sj;Nj

.

Then, for the DGP with hðkÞ ¼ ð1þ logðkÞÞb, the likelihood
function is given by

Lða; b; hÞ ¼
Y

N

j¼1

1� F aNjðxj;Nj
Þð1þlogðNjþ1ÞÞb

� �h i

Y

Nj

k¼1

fkðxj;iÞ
( )

¼
Y

N

j¼1

1� F aNjðxj;Nj
Þð1þlogðNjþ1ÞÞb

� �h in

�
Y

Nj

k¼1

ak�1ð1þ logðkÞÞbðxj;iÞð1þlogðkÞÞb�1
h

f ak�1ðxj;iÞð1þlogðkÞÞb
� �io

; ð10Þ

where
QNj

k¼1 	 ¼ 1 for Nj ¼ 0, h is the vector of the parameters

of distribution F(x).

Maximising the above likelihood function, we can obtain â,

b̂, and ĥ, which are the estimates of the corresponding

parameters, respectively. That is

ðâ; b̂; ĥÞ ¼ argmax
a;b;h

Lða; b; hÞ: ð11Þ

Denote # ¼ ða; b; hÞ, where #1 ¼ a, #2 ¼ b. The Fisher infor-

mation matrix IN0
ðâ; b̂; ĥÞ can then be calculated by

IN0
ðâ; b̂; ĥÞ ¼ �E

o2 logLða;b;hÞ
o#io#j

� �

j#¼ðâ;b̂;ĥÞ, which can be used to

estimate the asymptotic variance-covariance matrix of ðâ; b̂; ĥÞ.
In this paper, the Fisher information matrix will be used to

calculate the standard deviations of the estimated parameters.

Obviously, there is no general closed-form solution in

Eq. (10) for the MLE of â, b̂, and ĥ.

4. Applications of the DGP

In Sections 4.1 and 4.2, two case studies based on real-world

datasets are conducted to compare the performance of the DGP

with hðkÞ ¼ ð1þ logðkÞÞb, in terms of the corrected Akaike

information criterion, or AICc for short.

• For the least squares method, model performance is

measured by the root mean squared error

(RMSE)¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N0

PN0

k¼1ðxk � x̂kÞ
q

, where x̂k is the estimate

of the xk.

• For the maximum likelihood method, model performance

is measured with the AICc value, N0 lnðLÞ þ 2pþ 2pðpþ1Þ
n�pþ1

,

where p is the number of parameters in the model and L is

the maximised likelihood. The reader is referred to

Burnham and Anderson (2004) for more discussion on

the AICc. The value 2pþ 2pðpþ1Þ
n�pþ1

in the AICc value is a
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penalty term that is proportional to the number p of

parameters in a model.

4.1. Estimating the number of warranty claims

Table 1 shows warranty claim data that were collected from a

networking card manufacturer. The manufacturer ships a

certain number of items to its retailers on a month basis, and

then, the warranty agency manages warranty claims. The exact

number of the items sold in a shipment is unknown to the

warranty agency. It includes the number of warranty claims in

consecutive 12 months on 20 shipments. For example, the

italicised number 8 in month 2 and shipment 3 means that 8

2-month-old items that were claimed were from shipment 3 (or

they were shipped in month 3). The last column shows the CV

of the warranty claims in each month.

Figure 3 illustrates the coefficient of variation (CV) on the

warranty claims over the 12 months. As can be seen, the CV

values show an increasing trend. Following Lemma 2, it is

more appropriate to use the DGP to fit the data than the GP.

We fit the data with the nonparametric method by solving

the problem for the DGP:

ðl̂; â; b̂Þ ¼ argmin
l;a;b

X

20

i¼1

X

12

k¼1

xk;i � ðla1�kÞð1þlogðkÞÞ�b
� �2

ð12Þ

where xk;i is the number of warranty claims of k-month-old

items that are shipped in month i. Similarly, the parameters of

the GP are estimated. For the DGP model, l̂ ¼ 9:19ð3:495Þ,
â ¼ 1:00232ð0:114Þ and b̂ ¼ 0:250ð0:739Þ (the values in the

brackets are the estimate errors of the corresponding esti-

mates). The AICc values are AICcDGP ¼ 630:090 and

AICcGP ¼ 630:242, which suggests that the DGP outperforms

the GP.

4.2. Modelling time-between-failure data

4.2.1. The datasets Two datasets published in Kumar and

Klefsjö (1992), Ascher and Feingold (1984) are used in this

section. Both datasets are collected from the real world and are

time-between-failures. The names and the sample sizes of the

datasets are shown in Table 2, where N0 is the sample size.

Kumar and Klefsjö (1992) develop a power-law-based non-

homogeneous Poisson process (PL-NHPP) model on dataset 1,

and Lam (2007) develops geometric process models and PL-

NHPP models on dataset 2, which allow us to compare the

performance of the DGP with their results.

In the following, we compare the performance of the models

that are estimated with the least squares and the maximum

likelihood estimation methods, respectively.

4.2.2. Model comparison Definition 3 assumes that fXk; k ¼
1; 2; . . .g in theDGPare independent.We therefore use theBox–

T
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Ljung test to check the hypothesis that a given series of data is

independent (Ljung and Box, 1978). Applying the Box–Ljung

test on datasets 1 and 2, the result fails to reject the null

hypothesis that observations in datasets 1 and 2 are independent

at the 5% level of significance.

On the two datasets listed in Table 2, we use both the least

squares method and the maximum likelihood method to

estimate the parameters and then compare the performance of

the DGP with the GP.

With the least squares method, both the DGP and the GP are

estimated and their RMSE values are denoted by RMSEDGP

and RMSEGP, respectively. The estimated parameters and

their standard deviations (which are shown in brackets under

the estimated parameters), and the RMSE values of both the

DGP and the GP are shown in Table 3. As can been seen, the

RMSE values (in italics) of the DGP on each dataset are

smaller than the RMSE values of the GP, based on which one

can conclude the DGP outperforms the GP on both datasets.

Suppose FðtÞ ¼ 1� e
�ð t

h1
Þh2
. With the maximum likelihood

method, we use the DGP, the GP, the PL-NHPP to fit the two

datasets, and denote their corresponding AICc values as

AICcDGP, AICcGP, and AICcPL, respectively. The number of

the parameters (i.e. a; b; h1; h2) in the DGP and the number of

the parameters (i.e. a; h1; h2) in the GP are 4 and 3,

respectively, i.e. p ¼ 4 for the DGP and p ¼ 3 for the GP.

The number of the parameters in the PL-NHPP is 2 (i.e.

p ¼ 2). The results are shown in Table 4. The estimated

parameters and their standard deviations (which are shown in

brackets under the estimated parameters) of the DGP are also

given in the table. On the rest comparison, the AICc values (in

italics) of the DGP are the smallest.

In addition to the independence test conducted before, to test

the assumption that the DGP can model datasets 1 and 2, we use

the Cram�er-von-Mises test to test the null hypotheses that

fâk�1X
ð1þlogðkÞÞb̂
k ; k ¼ 1; . . .;N0g on datasets 1 and 2 follow the

Weibull distribution, respectively. We conduct the hypothesis

testingwith aR-packageEWGoF (Krit, 2014). The results fail to

reject the null hypotheses at the 5% level of significance.

4.3. Comparison between different forms of h(k)

In the preceding sections, we set hðkÞ ¼ ð1þ logðkÞÞb in

Definition 3. By setting other forms of h(k) such as

hðkÞ ¼ bk�1, hðkÞ ¼ blogðkÞ, or hðkÞ ¼ 1þ b logðkÞ, one can

define other forms of the DGP. To differentiate them, we refer to

the processes with hðkÞ ¼ ð1þ logðkÞÞb, hðkÞ ¼ bk�1, hðkÞ ¼
blogðkÞ and hðkÞ ¼ 1þ b logðkÞ as DGPlog1, DGPexp, DGPlog2,
and DGPlog3, respectively. Similarly, one can estimate param-

eters a and b of the DGPexp, DGPlog2, and DGPlog3 with either

the least squares or the maximum likelihood estimation method.

We have compared the AICc values of the DGPlog1 with the

AICc values of the rest three models on the ten datasets and

found that the AICc value of the DGPlog on each dataset is

smaller than those of the other threemodels, respectively, which

implies that the DGP with hðkÞ ¼ ð1þ logðkÞÞb outperforms.

That is the reason that we investigated the GDP with hðkÞ ¼
ð1þ logðkÞÞb in this paper.

Figure 3 Change of the CVs over 12 months.

Table 2 The datasets, including TBF (time between failures)

No. Dataset N0 References

1 Hydraulic system (LHD3) 25 Kumar and Klefsjö (1992)
2 Propulsion diesel engine failure data 71 Ascher and Feingold (1984)

Table 3 Comparison of the performance of the GP and the DGP based on the least squares method

No. Parameters of the DGP Parameters of the GP RMSEDGP RMSEGP

â b̂ l̂ â l̂

1 0.944 0.499 531.406 1.0382 209.841 111.729 144.431
(0.0559) (0.174) (109.390) (0.0315) (67.652)

2 0.909 0.488 147.624 0.972 56.702 65.670 69.810
(0.0607) (0.280) (62.664) (0.0181) (20.486)
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5. Conclusion and future work

This paper proposed a new stochastic process, the doubly

geometric process (DGP), which extends the geometric

process (GP). The DGP can overcome three limitations

inherent in the GP. The paper discussed probabilistic proper-

ties of the DGP with hðkÞ ¼ ð1þ logðkÞÞb, compared the mean

cumulative functions between the DGP and other processes,

and then proposed methods of estimation of the parameters in

the DGP.

The paper also applied the DGP to fit two inter-arrival time

datasets collected from the real world and then compared its

performance with the performance of other models. It is found

that the DGP outperforms the other models on those datasets.

This has practical implications for lifecycle costing, for

example.

As the DGP is a new model, there are plenty of questions

waiting for answers. Those questions include, for example,

what are the differences between the DGP and the other

models in terms of the application of the DGP in reliability

mathematics? Before we fit a given dataset with the DGP, how

can we test whether the dataset agrees with the DGP? To

answer those questions will be our future work.
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Appendix

Proof of Proposition 1 Let u(x) denote a non-decreasing

function. With Lemma 1, Xk is stochastically increasing if

E½uðXkþ1Þ� � E½uðXkÞ�[ 0 and let y ¼ ak�1xð1þlogðkÞÞb ,

then we can obtain

E½uðXkþ1Þ��E½uðXkÞ�¼
Z þ1

0

uðxÞdF akxð1þlogðkþ1ÞÞb
� �

�
Z þ1

0

uðxÞdF ak�1xð1þlogðkÞÞb
� �

¼
Z þ1

0

u a�kð1þlogðkþ1ÞÞ�b

yð1þlogðkþ1ÞÞ�b
� ��

�u að1�kÞð1þlogðkÞÞ�b

yð1þlogðkÞÞ�b
� ��

dFðyÞ

[0:

ð13Þ

Let y represent all the possible values on Xk

(for k ¼ 1; 2; . . .Þ. Hence, E½uðXkþ1Þ� � E½uðXkÞ�[ 0

if uða�kð1þlogðkþ1ÞÞ�b

yð1þlogðkþ1ÞÞ�bÞ � uðað1�kÞð1þlogðkÞÞ�b

yð1þlogðkÞÞ�bÞ [ 0. As u(.) is a non-decreasing function,

uða�kð1þlogðkþ1ÞÞ�b

yð1þlogðkþ1ÞÞ�bÞ � uðað1�kÞð1þlogðkÞÞ�b

yð1þlogðkÞÞ�bÞ [ 0 iff

a�kð1þlogðkþ1ÞÞ�b

yð1þlogðkþ1ÞÞ�b

að1�kÞð1þlogðkÞÞ�b

yð1þlogðkÞÞ�b

¼a�kð1þlogðkþ1ÞÞ�bþðk�1Þð1þlogðkÞÞ�b

yð1þlogðkþ1ÞÞ�b�ð1þlogðkÞÞ�b

[1:

ð14Þ

From equality (14), we have

• if b\0, then �kð1þ logðkþ1ÞÞ�bþðk�1Þð1þ
logðkÞÞ�b\0 and ð1þ logðkþ1ÞÞ�b�ð1þ logðkÞÞ�b

[0. That implies,

(i) if 0\a\1, PðX1 [ 1Þ ¼ 1, and b\0, Inequality

(14) holds. Then fXk; k ¼ 2; 3; . . .g is stochastically

increasing, and

(ii) if a[ 1, Pð0\X1\1Þ ¼ 1, and b\0, the greater-

than sign in Inequality (14) should be changed to the

smaller-than sign. Then fXk; k ¼ 2; 3; . . .g is

stochastically decreasing.

• On the other hand, if b[ 0, ð1þ logðk þ 1ÞÞ�b�
ð1þ logðkÞÞ�b\0. But if b[ 0, �kð1þ logðk þ
1ÞÞ�b þ ðk � 1Þð1þ logðkÞÞ�b

may be positive or

negative, which can be equivalently expressed as

k � 1

k
\

1þ logðkÞ
1þ logðk þ 1Þ

� �b

ð15Þ

may hold and

k � 1

k
[

1þ logðkÞ
1þ logðk þ 1Þ

� �b

ð16Þ

may hold as well.

If b is small (b ¼ 1, for example), then Inequality (15)

holds. If b is large, then Inequality (16) holds (this is

because
1þlogðkÞ

1þlogðkþ1Þ

� �b

! 0 for b ! 1). Since
1þlogðkÞ

1þlogðkþ1Þ

� �b

is a decreasing function of b, we can find a value of b,

denoted as b0, which satisfies: if 0\b\b0, then Inequality

(15) always holds for any k. Taking the logarithm on both

sides of Inequality (15) and then dividing both sides by

logð1þ logðkÞÞ � logð1þ logðk þ 1ÞÞ, then Inequality

(15) becomes

logðk � 1Þ � logðkÞ
logð1þ logðkÞÞ � logð1þ logðk þ 1ÞÞ\b: ð17Þ

Let b0 ¼ min
k

f logðk�1Þ�logðkÞ
logð1þlogðkÞÞ�logð1þlogðkþ1ÞÞ ; k ¼ 2; 3; . . .g.

One can obtain b0 ¼ 4:898226. If 0\b\b0, then �kð1þ
logðk þ 1ÞÞ�b þ ðk � 1Þð1þ logðkÞÞ�b\0 and ð1þ log

ðk þ 1ÞÞ�b � ð1þ logðkÞÞ�b\0, the Inequality (14) holds.

That implies

(iii) if 0\a\1, 0\b\b0, and Pð0\X1\1Þ ¼ 1, then

fXk; k ¼ 2; 3; . . .g is stochastically increasing, and

(iv) if a[ 1, 0\b\b0, and PðX1 [ 1Þ ¼ 1, then

fXk; k ¼ 2; 3; . . .g is stochastically decreasing.

This completes the proof. h

Proof of Proposition 2 Denote

U¼a�kð1þlogðkþ1ÞÞ�bþðk�1Þð1þlogðkÞÞ�b

yð1þlogðkþ1ÞÞ�b�ð1þlogðkÞÞ�b

:

ð18Þ

Similar to the proof of Proposition 1, if logðUÞ¼ð1þ
logðkþ1ÞÞ�bðlogðyÞ�k logðaÞÞþð1þ logðkÞÞ�bððk�1Þ
logðaÞ� logðyÞÞ varies between negative and positive

values, the left hand side of Eq. (14) changes between

(0, 1) and ð1;þ1Þ. That is, the process fXk;k¼1;2; . . .g
is stochastically non-monotonous.

This completes the proof. h
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Proof of Proposition 3

fkðtÞ ¼ ak�1ð1þ logðkÞÞbtð1þlogðkÞÞb�1f ak�1tð1þlogðkÞÞb
� �

:

ð19Þ

Denote rðtÞ ¼ f ðtÞ
�FðtÞ. We have,

rkðtÞ ¼
fkðtÞ
�FkðtÞ

¼
ak�1ð1þ logðkÞÞbtð1þlogðkÞÞb�1f ak�1tð1þlogðkÞÞb

� �

�F ak�1tð1þlogðkÞÞb
� �

¼ak�1ð1þ logðkÞÞbtð1þlogðkÞÞb�1r ak�1tð1þlogðkÞÞb
� �

;

ð20Þ

If b[ 0, then tð1þlogðkÞÞb is increasing in t. Since r(t) is an

increasing function in t, rkðtÞ is increasing in t. h

Proof of Proposition 4 If fXk; k ¼ 1; 2; . . .g is stochastically

non-decreasing, for every real numbers r0 and r1, we have

PðXk [ r0Þ�PðX1 [ r0Þ, or PðXk\r0Þ�PðX1\r0Þ.
Then we have Pð

Pn
i¼1 Xk\r1Þ�Pð

Pn
i¼1 Yi\r1Þ, which

implies that inequality mðtÞ�m1ðtÞ holds.
Similarly, we can prove that mðtÞ�m1ðtÞ if fXk; k ¼

1; 2; . . .g is stochastically non-decreasing.

According to Bennett’s inequality (Bennett 1962)

below,

P
X

n

k¼1

ðXk � E½Xk�Þ[ t

 !

� exp � nr2

c2
H

ct

nr2

� �

� �

; ð21Þ

where HðuÞ ¼ ð1þ uÞ lnð1þ uÞ � u, we can obtain

P Sn\tð Þ� 1� exp � nr2

c2
H

ct � cKn

nr2

� �� �

: ð22Þ

Hence,

mðtÞ�
X

1

n¼1

1� exp � nr2

c2
H

ct � cKn

nr2

� �� �� �

: ð23Þ

This completes the proof. h

Proof of Proposition 5 In the following, we prove (i).

According to Definition 1, if X
g
k\stX

d
k , we have

mgðtÞ[mdðtÞ. For a given non-decreasing function u(x),

with Lemma 1, X
g
k\stX

d
k if E½uðXg

k Þ�\E½uðXd
k Þ�. Since

E u X
g
k

	 
� �

�E u Xd
k

	 
� �

¼
Z þ1

0

uðxÞdFðak�1xÞ

�
Z þ1

0

uðxÞdF ak�1xð1þlogðkÞÞb
� �

¼
Z þ1

0

uðað1�kÞyÞ
�

�u að1�kÞð1þlogðkÞÞ�b

yð1þlogðkÞÞ�b
� ��

dFðyÞ;

ð24Þ

E½uðXg
k Þ�\E½uðXd

k Þ� if uðað1�kÞyÞ\uðað1�kÞð1þlogðkÞÞ�b

yð1þlogðkÞÞ�bÞ. As u(.) is a non-decreasing function,

uðað1�kÞyÞ\uðað1�kÞð1þlogðkÞÞ�b

yð1þlogðkÞÞ�bÞ holds if

að1�kÞy

að1�kÞð1þlogðkÞÞ�b

yð1þlogðkÞÞ�b ¼að1�kÞð1�ð1þlogðkÞÞ�bÞy1�ð1þlogðkÞÞ�b

\1:

ð25Þ

Inequality (25) holds if either of the following conditions

is true,

• if 0\a\1, b\0 and PðX1 [ 1Þ ¼ 1,

• if a[ 1, b[ 0 and Pð0\X1\1Þ ¼ 1.

Similarly, the other bullet (ii) can be established.

This completes the proof. h

Proof of Proposition 6 Similar to the proof for Proposi-

tion 5, Proposition 6 can be established. h

Proof of Proposition 7

• For any given M[ 0,

lim
k!1

PðjXkj\MÞ ¼ lim
k!1

Pð0\Xk\MÞ

¼ lim
k!1

P X1\ak�1Mð1þlogðkÞÞb
� �

:
ð26Þ

If 0\a\1, then lim
k!1

ak�1Mð1þlogðkÞÞb ¼ 0. Since X1 is non-

negative, lim
k!1

PðX1\ak�1Mð1þlogðkÞÞbÞ ¼ 0, or

lim
k!1

PðjXkj\MÞ ¼ 0. That is, Xk converges to infinity in

probability as k ! 1.

• For any given e[ 0,

lim
k!1

PðjXkj[ eÞ ¼ lim
k!1

PðXk [ eÞ ¼ 1� lim
k!1

PðX1 � eÞ

¼ 1� lim
k!1

P Xk � ak�1eð1þlogðkÞÞb
� �

:

ð27Þ
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If a[ 1, then lim
k!1

ak�1eð1þlogðkÞÞb ¼ 1. That implies

lim
k!1

PðX1 � ak�1eð1þlogðkÞÞbÞ ¼ 1, or lim
k!1

PðjXkj[ eÞ ¼ 0.

That is, Xk converges to zero in probability as k ! 1.

This completes the proof. h

Received 14 October 2015;

accepted 6 March 2017

Shaomin Wu—Doubly geometric processes and applications


	Doubly geometric processes and applications
	Abstract
	Introduction
	Motivation
	The geometric process and related work
	Comments on the geometric process and its extensions
	Contribution and importance of this work
	Overview

	A doubly geometric process and its probabilistic properties
	Probabilistic properties of the DGP with h(k)=(1+\log (k))^b
	Discussion

	Estimation of the parameters in the DGP
	Least squares method
	Maximum likelihood method

	Applications of the DGP
	Estimating the number of warranty claims
	Modelling time-between-failure data
	The datasets
	Model comparison

	Comparison between different forms of h(k)

	Conclusion and future work
	Acknowledgements
	References
	Appendix




