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Abstract
The COVID-19 pandemic and the strong social distancing measures adopted by gov-
ernments around the world provide an ideal scenario to evaluate the trade-off between 
lives saved and morbidity avoided on the one hand and reduced economic resources 
on the other. We adapt the standard model of willingness to pay (WTP) for mortality/
morbidity risk reductions by incorporating a number of aspects that are highly rel-
evant during an epidemic; namely, health-care capacity constraints, dynamic aspects 
of prevention (i.e., interventions aimed at flattening the epidemic curve), and distribu-
tional issues due to high heterogeneity in the underlying risks. The calibration of the 
model generates a WTP of the order of 24% of GDP. We conclude that the benefits in 
terms of lives saved and morbidity avoided can well justify the enormous economic 
costs generated by social distancing interventions. There is, however, significant that 
heterogeneity in WTP estimates depending on the degree of vulnerability to infection 
risk (e.g., by age), implying a large redistribution of income and well-being.

Keywords Willingness to pay · Value of statistical injury · COVID-19 pandemic · 
Health-care capacity constraints

1 Introduction

As a result of the ongoing coronavirus (COVID-19) pandemic, individuals and 
governments around the world are undertaking strong actions to prevent the rapid 
spread of the disease and potentially millions of deaths, including school and 

 * Diego C. Nocetti 
 dnocetti@clarkson.edu

 Luciana Echazu 
 luciana.echazu@unh.edu

1 Peter Paul College of Business and Economics, University of New Hampshire, Durham, NH, USA
2 David D. Reh School of Business, Clarkson University, Potsdam, NY, USA

http://crossmark.crossref.org/dialog/?doi=10.1057/s10713-020-00053-0&domain=pdf


115The Geneva Risk and Insurance Review (2020) 45:114–133 

universities closures, stay-at-home mandates, and even lock downs of entire cities. 
These actions generate a steep cost in terms of reduced economic activity, millions 
of lost jobs, worse educational outcomes for children, psychological stress, reduced 
health-care resources for other medical conditions, and many others. The evaluation 
of the costs and benefits of preventing fatalities and/or non-fatal injuries has a long 
history in economics [See Viscusi (2014) for a recent treatment]. To capture the 
trade-off between economic resources and human lives saved, economists typically 
calculate the value of statistical life (VSL): The amount that individuals are willing 
to pay for an intervention that marginally reduces mortality risk, per unit of risk. 
Similarly, the value of statistical injury (VSI) represents the amount that individu-
als are willing to bear to reduce the risk of an injury or a disease, per unit of risk. 
The COVID-19 pandemic and the measures adopted provide an ideal scenario to 
apply these methods and to evaluate the balance between the revealed value of the 
lives saved and morbidity avoided on the one hand and the costs in terms of reduced 
economic resources on the other (and possibly opportunity costs and non-pecuniary 
costs as well).

We adapt the standard economic model of willingness to pay (WTP) for mor-
bidity and fatality risk reductions by incorporating a number of issues that are par-
ticularly relevant during epidemics [see Anderson et al. (2020) for a discussion of 
these issues from an epidemiological perspective]; namely, health-care capacity 
constraints, dynamic aspects of prevention (i.e., interventions aimed at flattening 
the epidemic curve to avoid overwhelming the health-care system and to allow time 
for vaccination discovery and manufacture of antiviral drug therapies), and distribu-
tional issues due to high heterogeneity in the underlying risks.

Our theoretical exercise shows that static and dynamics aspects of prevention 
interact in interesting ways to determine the WTP for a public intervention that 
reduces the risk of virus contagion across the population (e.g., social distancing/iso-
lation measures). For example, when vaccine discovery becomes more likely (i.e., a 
shorter expected time until vaccine discovery), there is a stronger incentive to reduce 
the current spread of the virus but at the same time there is a reduction in the risk of 
being infected over the course of the pandemic, so the effect on the WTP is ambigu-
ous. Conversely, while reducing the probability of infection typically becomes more 
valuable the higher the infection rate is, individuals may be willing to sacrifice less 
economic resources for a given intervention if the risk of infection over the course 
of the pandemic remains relatively unchanged (e.g., when the infection risk remains 
high after the intervention and vaccine discovery is unlikely to happen in the near 
term). To put it differently, we should observe more support for social distancing 
measures when the probability of infection is higher (e.g., New York City versus 
Houston in March 2020), insofar as those interventions make a sufficiently large dif-
ference in terms of averting morbidity and mortality over the entire course of the 
pandemic.

As expected, a larger size of the vulnerable population or more limited health-
care resources increase the WTP, and both aspects reinforce each other as those 
more vulnerable are more likely to suffer from health-care capacity shortages. The 
effect of limited health-care capacity is particularly strong when vaccine discovery 



116 The Geneva Risk and Insurance Review (2020) 45:114–133

is unlikely in the near future and when people are more patient since in this case 
future capacity shortages become more relevant in the present.

We use currently available epidemiological data to calibrate the model. For an 
intervention that reduces the baseline probability of infection by 90%, we obtain a 
maximum willingness to pay of about $15,500 per person in the United States ($5.0 
trillion, or about 24% of 2019 GDP), with a range of $8000 to $28,000 per per-
son under alternative parametrizations. The calibration generates a “social” Value 
of Statistical Injury (aggregate WTP per expected morbidity avoided) of about 
$34,000, which is consistent, although in the lower range of VSI estimates typically 
found in the literature [e.g., Viscusi and Aldy (2003)].

The possibility of vaccine discovery and health-care capacity constraints both 
play an important role in the baseline calibration, each contributing a significant 
portion of WTP. In addition, we present suggestive evidence that, due to pronounced 
vulnerability differences, there are large differences in WTP. In the baseline calibra-
tion, the high vulnerability group has a WTP of more than $40,000 while the low 
vulnerability group’s WTP is only about $11,000.

The paper proceeds as follows. In the next section, we present the model and 
evaluate the comparative statics of then model’s parameters. In Sect. 3, we present 
a calibration of the model while Sect. 4 discusses the limitations of the analysis and 
concludes. An Appendix presents the derivations of the main equations presented in 
the text.

2  Theoretical issues

The standard model behind willingness to pay for mortality risk reductions is well 
known [see e.g., Anderson and Treich (2011) for a review of theoretical insights]. 
Given a baseline probability of dying p and a utility over wealth u(W) if alive and 
d(W) if dead, a decision-maker’s expected utility is V{p} = (1 − p)u(W) + pd(W) 
and her willingness to pay C(�) to decrease the risk by a proportion � is given by

If, as we assume below, the decision-maker is risk neutral, u(W) = W, and 
d(W) = 0 , we have

A first-order approximation around � = 0 gives

The term W

(1−p)
 , and its equivalent expression as the marginal rate of substitution 

between wealth and crude mortality risk dW
dp dV=0

 , is known as the Value of a Statisti-
cal Life (VSL).

(1)
(1 − p)u(W) + pd(W) = (1 − p(1 − �))u(W − C(�)) + p(1 − �)d(W − C(�)).

(1′)C(�) =
�pW

(1 − p(1 − �))
.

(1″)C(�) ≈ C(0) + C
�

(0)� =
W

(1 − p)
�p
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Pandemics such as COVID-19 are characterized by a number of issues that are 
not well-captured by Eq. (1). First, both mortality and morbidity risks play a signifi-
cant role. Second, given the number of people potentially affected, any intervention 
has to take into account capacity constraints of the health-care system. Third, the 
underlying risks and the effects of interventions may be highly heterogeneous across 
the population (for instance, in the case of COVID-19, mortality and morbidity 
are highly correlated with age and pre-existing conditions), bringing distributional 
issues into consideration. Finally, decision makers (individuals and/or the govern-
ment) have limited direct control over mortality risk of those infected; instead, early 
interventions typically aim at limiting social contacts to contain and/or mitigate the 
rapid spread of the virus (e.g., due to capacity constraints and the possibility of vac-
cine discovery). This introduces dynamic aspects which are not present in Eq. (1).

In the next two subsections we evaluate each of these aspects, first one at a time 
for clarity and then all together.

2.1  Static analysis

We are interested in evaluating the willingness to pay to reduce mortality and mor-
bidity risks during an epidemic, from the time in which preventive actions are con-
sidered onwards. We start by considering a static framework as above.

2.1.1  Basic setup

Consider a population of M individuals, all of which are susceptible to a virus infec-
tion. The infection risk is pI. Of those infected, a proportion pS become severely 
ill and require hospitalization (provided that hospital capacity is available). Among 
those hospitalized, a proportion pD die and the rest recover. The crude mortality risk 
therefore is p = pIpSpD . Utility equals W if not severely sick, mW if severely sick, 
where m < 1 represents a utility cost of morbidity and/or a fraction of wealth lost 
due to sickness, and 0 if dead. Given the assumed probabilities, and without any 
other consideration (e.g., capacity constraints, heterogeneity, dynamics), expected 
utility for any given individual equals

Consider an intervention that reduces social contact and, as such, decreases infec-
tion risk by a proportion � . The willingness to pay for this intervention is

or equivalently,

(2)Vb
{

pI
}

=
(

1 − pIpS
)

W + pIpS
(

1 − pD
)

mW.

(3)Cb(�) =
Vb

{

pI(1 − �)
}

− Vb
{

pI
}

(

1 − (1 − �)pIpS
)

+ (1 − �)pIpS
(

1 − pD
)

m
,

(3′)Cb(�) =
�pIpS

(

1 −
(

1 − pD
)

m
)

(

1 − (1 − �)pIpS
)

+ (1 − �)pIpS
(

1 − pD
)

m
W.
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Cb(�) increases with the baseline probability of infection pI, the probability of a 
severe case pS, and the probability that a severely sick individual dies pD. A larger 
morbidity discount, or equivalently a higher cost of hospitalization, (i.e., a lower m ) 
also increases WTP.

2.1.2  Capacity constraints

Let K denote the maximum capacity available for coronavirus patients. Suppose that 
if maximum capacity is overwhelmed, those that are severely ill but are not hospital-
ized die at a rate pDK > pD . Assuming random selection of those that are hospital-
ized if the constraint binds, the probability of hospitalization is ph = min

(

1,
K

pSpIM

)

. 
Define the capacity gap asG = pSpIM − K.1 Utility can be written as

Capacity gaps, and the resulting increase in infection mortality rate, reduce 
utility and the size of the decrease is proportional to the capacity gap per capita, 
max(G, 0)∕M . The WTP for a proportional reduction in infection risk in this case is

where G�

= pSpI(1 − �)M − K is the capacity gap post intervention. Since 
max(G, 0) ≥ max

(

G�, 0
)

≥ 0 , it follows that capacity gaps, and in particular lower 
capacity available K, increase the WTP. A larger difference in mortality risk from 
insufficient capacity, 

(

pDK − pD
)

, also increases WTP. For example, given a reduc-
tion in infection risk that is just enough to eliminate an existing capacity gap, i.e., 
G

�

= 0 and � = G∕pIpSM , we have

2.1.3  Heterogeneous vulnerabilities

Consider three types of individuals: immune, low risk ( l ), and high risk (h) . There 
are M − N immune individuals with utility W . Among the N susceptible individuals, 

(4)VK
{

pI
}

= Vb
{

pI
}

− m
(

pDK − pD
)

W max(G, 0)∕M

(5)

CK(�) =
�pIpS

(

1 −
(

1 − pD
)

m
)

+ m
(

pDK − pD
)(

max(G, 0)∕M −max
(

G�, 0
)

∕M
)

(

1 − (1 − �)pIpS
)

+ (1 − �)pIpS
(

1 − pD
)

m − m
(

pD,K − pD
)

max(G�, 0)∕M
W,

(5′)CK(�) = Cb(�) +
m
(

pDK − pD
)

(G∕M)

1 − (K∕M)
[

1 −
(

1 − pD
)

m
]W.

1 To avoid additional notation, we assume that m is the same for individuals that are not hospitalized. 
The idea is that, while those individuals may have a larger utility cost, they will also have a lower mon-
etary cost.
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those of type h are in proportion � and have an additional probability of severe ill-
ness �S and an additional probability of mortality of severe cases �D than typel
.2 The expected utility for type l individuals is, as before, Vb

{

pI
}

 and we denote 
Vh

{

pI
}

 the expected utility for type h individuals. Given a utilitarian social welfare 
functionVS

{

pI
}3, we have

Let us suppose that everybody pays the same amount CS(�) to reduce infection 
risk by a proportion �.4 The amount CS(�) that leaves social welfare unchanged can 
be written as a weighted average of each group’s WTP,

where qh =
�NVh{pI(1−�)}

(M−N)W+N[(1−�)Vb{pI(1−�)}+�Vh{pI(1−�)}]
 and 

ql =
(1−�)NVb{pI(1−�)}

(M−N)W+N[(1−�)Vb{pI(1−�)}+�Vh{pI(1−�)}]
.

Not surprisingly, since W > Vb > Vh , CS(�) increases as the number of suscep-
tible individuals N increases (e.g., an earlier intervention) and also as the share of 
more vulnerable individuals � increases (e.g., countries with older population).5

2.1.4  A simple dynamic setting

In the static framework above, we assumed that a fraction of the susceptible popula-
tion is infected but we did not consider what happens with the remaining susceptible 
individuals. In reality, interventions reducing social contact slow down, but do not 
necessarily reduce or stop, the spread of the disease. Here we consider two reasons 
why flattening the epidemic curve may be useful. First, it allows time for vaccination 
discovery and manufacture of antiviral drug therapies. Second, reducing the initial 
spread of the disease may reduce or eliminate health-care capacity gaps.

To capture these issues in a simple way, suppose that in any given period, 
t = 1, 2, .., susceptible individuals become infected at a constant rate pI and surviv-
ing individuals become immune to the virus. The time from infection to recovery or 
death is no more than one period, although presumably some individuals spread the 
virus from one period to the next. This means that period t starts with 

(

1 − pI
)t−1

N 
susceptible individuals and has pI

(

1 − pI
)t−1

N new cases (given that a vaccine has 

(6)VS
{

pI
}

= (M − N)W + N
[

(1 − �)Vb
{

pI
}

+ �Vh
{

pI
}]

.

(7)CS(�) = qlC
b(�) + qhC

h(�) +
(

1 − ql − qh
)

0,

2 In our complete model, we will denote �
DK

 the additional probability of mortality given no hospitali-
zation (given capacity constraints).
3 See Adler et al. (2014) for an analysis of how the value of risk reduction is evaluated under social pref-
erences other than utilitarian.
4 A uniform payment CS(�) may be justified if the social planner does not have information about the 
individual types and/or if there are large (unmodeled) costs of adopting differential policies—Treich and 
Yang (2019) provide a thorough discussion of the financing of public safety projects in the context of 
imperfect tax systems. We recognize, however, that our assumption does not capture the fact that people 
may face different costs from uniform public prevention interventions (e.g., Restrictions on travel and 
non-essential businesses may have a more limited impact on the elderly).
5 Notice that, in our setting with a utilitarian social welfare function, greater heterogeneity in p

S
 , in the 

sense of groups that generate a mean preserving spread over p
S
 , would not change the social WTP.
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not been discovered). Periods can be interpreted as epidemic phases, each lasting 
two or three months after the intervention is considered at the beginning of t = 1 . 
This is important because the assumption that pI is constant implies that the num-
ber of new cases at the end of the initial period, pIN , represents either the peak of 
the epidemic curve or the declining stage of the curve. In the calibration below, we 
assume that infection risk pI depends on the number of infected individuals relative 
to the size of the population before the public intervention is considered (e.g., during 
COVID-19, many people were infected in New York City before strong measures 
were put in place, implying a relatively high pI and a significant portion of the popu-
lation becoming immune at t = 0).

We assume that there is a constant probability � that a vaccine is discovered in 
period t ; i.e., the probability that a vaccine has not been discovered after t periods 
equals (1 − �)t.6 This implies that the expected number of deaths over the course of 
the epidemic equals ND =

pIpSpD

1−(1−�)(1−pI)
N and the expected number of people infected 

over the course of the pandemic equals NI =
pI

1−(1−�)(1−pI)
N . Finally, suppose that the 

period discount factor for all individuals is (1 + r)−1 , that period income equals w , 
and that the period morbidity discount m applies to all infected individuals equally.

2.1.5  Basic setup

Going back to the most basic setting, but incorporating the possibility of vaccine 
discovery, lifetime expected utility can be written in recursive form as

An individual that has just avoided infection (probability 
(

1 − pI
)

 ) receives 
income w and expects to receive w thereafter if a vaccine is discovered (expected 
present value � w

r
 ) and 1

(1+r)
Vt+1 if it is not. An individual that is infected, whether 

severely or not, and does not die (probability pI
(

1 − pDpS
)

 ) receives utility 
w
(

m +
1

r

)

.

Setting Vt

{

pI
}

= Vt+1

{

pI
}

≡ Vd
{

pI
}

 in Eq. (8) we obtain

We evaluate the WTP out of first period income, now denoted cd(�) , to reduce pI 
(in all periods) by a proportion � . The interpretation of the intervention parameter � 
is not necessarily that the same social distancing measures remain forever; rather, it 
seems likely that maintaining a lower, constant infection rate requires strong early 
actions followed by an easing of the policy measures over time. We allow cd(�) to 

(8)Vt

{

pI
}

=
(

1 − pI
)

[

w + �
w

r
+

1 − �

(1 + r)
Vt+1

{

pI
}

]

+ pI
(

1 − pSpD
)

w
(

m +
1

r

)

(8′)

Vd
{

pI
}

=
(1 + r)

r + pI + �
(

1 − pI
)w

[

(

1 − pI
)

(

1 + �
1

r

)

+ pI
(

1 − pSpD
)

(

m +
1

r

)]

6 The parameter � may also capture the progressive discovery of efficient antiviral treatments—reducing 
expected death and morbidity costs for susceptible individuals.
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be larger than w , so borrowing is allowed, but the assumption that WTP is valued in 
current dollars means that the expected net present value of such borrowing must be 
zero (see e.g., Shepard and Zechhauser 1984). The maximum WTP for the suscepti-
ble group is

or equivalently,

As in the static case, cd(�) is higher if the virus is more likely to generate 
severe health outcomes (hospitalization and/or death), if the morbidity discount 
is larger, if the public intervention is more effective, and if income is higher. In 
addition, some new comparative statics are of interest. For a very patient indi-
vidual (i.e., with a low r ) the possibility of dying sooner due to contracting the 

(9)
Vd

{

pI
}

= Vd
{

pI(1 − �)
}

−
[(

1 − pI(1 − �)
)

+ pI(1 − �)
(

1 − pSpD
)

m
]

cd(�),

(9′)cd(�) =
Vd

{

pI(1 − �)
}

− Vd
{

pI
}

(

1 − pI(1 − �)
)

+ pI(1 − �)
(

1 − pSpD
)

m

Fig. 1  a Social WTP as a function of r. b Social WTP as a function of r (beta = 0; int. factor = 0.2)
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virus has a very large consequence in terms of the present value of the lost util-
ity stream. However, as long as he recovers, being sick generates a small cost 
relative to the present value of his lifetime utility, especially if he is only avoid-
ing being sick now rather than later (e.g., when vaccine discovery is unlikely to 
happen and the intervention is relatively ineffective). Conversely, a very impa-
tient individual faces a relatively large cost of being sick (e.g., in the limit, as 
r → ∞ and m = 0 , it is just like dying) but a relatively less significant conse-
quence of dying. We conclude that the effect of greater impatience on the WTP 
c(�) is ambiguous (see Fig. 1 in Sect. 3).

Similarly, an increase in the probability of vaccine discovery generates a 
strong incentive to avoid being infected in the present to make use of the soon-
to-be-discovered vaccine. However, if there is a small likelihood of being 
infected over the course of the pandemic (i.e., at relatively high levels of � ), 
the economic incentive to permanently reduce pI decreases (e.g., when � = 1 the 
only incentive to sacrifice income is to reduce the current risk of infection) (see 
Fig. 2 in Sect. 3).

Finally, in contrast to the static case, a higher baseline probability of infection 
also has an ambiguous effect on the WTP. As in the static case, a higher infection 
risk generates a stronger incentive to reduce it since being healthy is better than 
being sick (obviously, at pI = 0 there is no incentive to pay anything). In addition, 
a higher infection risk generates a steeper infection curve. Given a relatively high 
probability of vaccine discovery (and/or health-care capacity shortages as below), 
flattening the epidemic curve is very valuable, so there is a dynamic effect which 
makes WTP to increase further as pI increases. However, when flattening the 
curve is not very valuable (e.g., when � and r are relatively low and K is large), 
the incentive to pay for an intervention that reduces pI may be lower at higher lev-
els of pI (see Fig. 3 in Sect. 3).

Remark Differences in WTP given different infection rates may explain the dis-
jointed response to COVID-19 across U.S. States and, in particular, the greater 
acceptance of social distancing measures in States with a relatively large number 
of cases. As pointed out by an anonymous referee to us “the real source of the 

Fig. 2  Social WTP as a function of β 
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discord may not be a tension between those people who are less vulnerable to the 
disease and those people who are more vulnerable to the disease but rather a ten-
sion between those states who are at the peak stage and those states who have not 
yet reached their peak stage, such that even if willingness to pay at the peak is the 
same, current WTP is not.”

2.1.6  The complete model

The final specification of social welfare, which we use in the calibration, introduces 
heterogeneity and capacity constraints to the dynamic setting presented above. 
Social welfare can be written as follows:

where w
(

1+r

r

)

 , Vl,F
{

pI
}

 , and Vh,F
{

pI
}

 represent lifetime expected utility for the 
non-susceptible population, the low-risk population, and the high-risk population, 
respectively. The social WTP out of current income cS,F(�) is

In the Appendix, we present an explicit solution for the social WTP. As in the 
static case, cS,F(�) increases with the size of the vulnerable population and when 
hospital capacity is more limited. In addition, since capacity shortages are more det-
rimental to high-risk individuals, who are more likely to need hospitalization and 
also more likely to die when the health-care system is overwhelmed, the effect of 
capacity constraints on cS,F(�) is stronger when the proportion of vulnerable individ-
uals is higher. Health-care capacity shortages also have a stronger effect on cS,F(�) 
when people are more patient and/or when the probability of vaccine discovery is 
low since in those cases future capacity shortages are more relevant in the present 
(see Fig. 4 in Sect. 3).

Table 1 summarizes all the comparative statics that apply to cS,F(�).

(10)VS,F
{

pI
}

= (M − N)w
(

1 + r

r

)

+ N
[

(1 − �)Vl,F
{

pI
}

+ �Vh,F
{

pI
}]

,

(11)VS,F
{

pI
}

= VS,F
{

pI(1 − �), cS,F(�)
}

Fig. 3  Social WTP as a function of infection risk
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Fig. 4  a Capacity constraint contribution to social WTP. b Capacity constraint contribution as a percent-
age of social WTP

Table 1  Comparative statics analysis

Notation Description Comparative 
statics on 
WTP

1 − � Intervention factor Negative
N Population initially susceptible Positive
w Income (per period, per person) Positive
r Period discount rate Ambiguous
m Morbidity utility discount Negative
� Probability of vaccine discovery Ambiguous
K Hospital capacity Negative
pI Baseline probability of infection Ambiguous
pS Baseline probability of severe case Positive
pD Baseline mortality rate of severe cases (given hospitalization) Positive
pDK Baseline mortality rate of severe cases (given no hospitalization) Positive
� Proportion of vulnerable individuals among the initially susceptible Positive
�j (j = S,D,DK) Additional risks for type h Positive
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Remark: In the calibration below, we present the social WTP per expected mor-
bidity avoided, denoted SVSI(�) and defined as follows, SVSI(�) = cS,F(�)M∕ΔNI(�), 
where ΔNI(�) is the change in the expected number of people infected between the 
unmitigated scenario and the scenario with intervention parameter � . This measure 
corresponds to what is known as the value of a statistical injury (e.g., Viscusi and 
Aldy (2003) and Viscusi and Gentry (2014)). Similarly, we calculate the WTP per 
expected morbidity avoided for each risk-type, Sh

VSI
(�) = ch,F(�)�N∕ΔNI,h(�) and 

Sl
VSI

(�) = cl,F(�)(1 − �)N∕ΔNI,h(�).

3  Calibration

In this section, we calibrate the model to provide tentative estimates on the WTP to 
reduce morbidity and mortality risks during the pandemic COVID-19. We use the 
United States as a case study, although in the sensitivity analysis we evaluate a wide 
range of scenarios. The baseline calibration values are presented in Table 2. We take 
as the high-risk group those over 60 years of age, which comprises about 22% of the 
population, and an additional 3% of the population to account for other vulnerable 
individuals (e.g., young individuals with pre-existing conditions).7 The time period 

Table 2  Baseline calibration values

Notation Description Baseline calibration values

1 − � Intervention factor 0.1
M Population 325,000,000
N Population initially susceptible 0.8M = 261, 600, 000

w Income (per period, per person) $16,000
r Period discount rate 0.01
m Morbidity utility discount 0
� Probability of vaccine discovery 0.1
K Hospital capacity 1,000,000
pI Baseline probability of infection 0.2

pS Baseline probability of severe case 0.03
pD Baseline mortality rate of severe cases (given hospitali-

zation)
0.048

pDK Baseline mortality rate of severe cases (given no hospi-
talization)

1.5 pD

� Proportion of vulnerable individuals among the initially 
susceptible

0.25

�j ( j = S,D,DK) Additional risks for type h �S = 0.13;
�D = 0.16;
�DK = 1.5 �D = 0.24

7 We do not consider differences by gender, although there seems to be evidence of significantly higher 
death rates for males [e.g., Jin et al (2020)].
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is taken to be 3 months (E.g., first period refers to February 2020 to April 2020). For 
the baseline epidemiological parameters, we use estimates in Verity et  al. (2020). 
For the parameter pS , we use as a baseline 3% for the low-risk group and 16% for 
the high-risk group, which is approximately the proportion of infected individuals 
hospitalized presented in Verity et al. (p. 7). We calculate pD , the fatality rate among 
those hospitalized, using the infection fatality rate in Verity et al. (Pg. 5) (0.145% for 
the low-risk/under-60 group and 3.28% for the high-risk/over-60 group) and divid-
ing it by the hospitalization rate. We assume that a severe case that is not hospital-
ized has a 50% higher fatality rate, so pDK = 1.5pD.

We assume as a baseline that 80% of the population is susceptible when the inter-
vention is considered, i.e., N = 0.8M . The rest of the population is composed of 
individuals that are never infected, individuals that have recovered and not infec-
tious, and, most significantly for a novel virus like COVID-19 and in the initial stage 
of a pandemic, individuals that are infected and spread the virus before the interven-
tion are in place. Based on this last group, we assume that the probability of infec-
tion in the initial period equals the ratio of those infected before the intervention to 
the total population; namely, pI = 0.2.

Without taking into account capacity constraints, these parameters generate about 
53 million infected in the initial period and 1.72 million deaths over the course of 
the epidemic in the unmitigated scenario, with about 88% deaths from the high-risk 
group. Assuming a capacity of 1 million hospital beds per period, another 450,000 
deaths are predicted. These numbers are consistent with Ferguson et  al.’s (2020) 
estimate of 2.2 million deaths in the unmitigated scenario.

With an intervention factor of 0.1 (i.e., a 90% reduction in infection risk), the 
number of expected infected individuals in the first period decreases to 5.3 mil-
lion and the number of deaths over the course of the pandemic decreases to about 
172,000 (about 2 million lives saved), which seems to be somewhat consistent with 
current estimates.8

We set the probability of vaccine discovery � at 0.1, or about 2.5 years on expec-
tation. For the preference parameters, we use r = 0.01 (around 4% discount per year) 
and m = 0 (i.e., zero utility during the single time period of the disease). Finally, we 
set w = 16, 000 , about quarterly GDP per capita in the US in 2019.

This calibration generates a social WTP of $15,468 per person, or about $5.0 
trillion (24% of 2019 GDP), with $2,119 arising as a result of expected capacity 
shortages. There is a large difference in the different groups’ WTP, with a WTP of 
$41,024 for the high-risk individuals, $10,868 for the low-risk individuals, and (by 
construction) $0 for those immune.

In terms of WTP per expected morbidity avoided, the calibration generates esti-
mates of SVSI(�) = $35, 490 , Sh

VSI
(�) = $84, 975 , and Sl

VSI
(�) = $19, 188 . In addi-

tion, the calibration generates a social WTP per life saved of about $2.4 million. As 

8 As of May 2020, there were about 1,000,000 confirmed cases in the US. This would give a ratio of 
about 5 true cases per confirmed case, which is in the lower end of the estimates (e.g., Li et al (2020) 
estimate that in the early stages of the epidemic in China about 86% of the cases went undetected). As of 
mid-June 2020, there were 2 million confirmed cases and 120,000 confirmed deaths.
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discussed below in Sect. 4, these estimates are consistent with, although in the lower 
range, VSI and VSL estimates typically found in the literature.

Tables 3 and 4 present alternative calibrations. In Table 3, we consider param-
eter changes that generate lower WTP estimates while Table 4 presents parameter 
changes that generate higher WTP estimates. The social WTP ranges from about 
$8000 in Table 3 to about $24,000 in Table 4 ($2.7 T to $7.8 T). For the high-risk 
group the range is significantly larger, from about $15,500 to $84,500 (and only 
about $7,500 to $12,500 for the low-risk group).

Given the calibration selected, willingness to pay is most sensitive to changes in 
the discount rate, the proportion-vulnerable individuals, and their risk of hospitaliza-
tion and death, although changes in the latter generate post-intervention attack rates 
and deaths that are significantly below or above current estimates. The probability 

Table 3  Lower WTP calibrations

Description Low WTP calibrations Social WTP High-risk WTP Low-risk WTP

Intervention factor 0.25 12,691 38,777 8402
Period discount rate 0.05 8262 15,487 8664
Fraction of highly vulnerable 

individuals
0.1 10,857 43,354 10,323

Probability of vaccine dis-
covery

0.3 11,254 33,907 7531

Hospital capacity Unconstrained 13,517 37,646 10,071
Baseline probability of infec-

tion
0.1 10,994 31,443 7880

Baseline probabilities pj 
( j = S,D,DK)

0.5 baseline pj 14,282 44,140 9186

Additional risks for type h 0.5 baseline �j 10,503 21,684 10,349

Table 4  Higher WTP calibrations

Description High WTP calibrations Social WTP High-risk WTP Low-risk WTP

Intervention factor 0.05 17,158 50,871 11,698
Period discount rate 0.005 24,064 84,267 12,181
Fraction of highly vulnerable 

individuals
0.5 23,756 49,056 10,576

Probability of vaccine dis-
covery

0.05 15,928 47,772 10,730

Hospital capacity 200,000 16,980 53,240 10,669
Baseline probability of infec-

tion
0.4 18,430 57,446 11,824

Baseline probabilities pj 
( j = S,D,DK)

1.5 baseline pj 17,094 47,794 12,675

Additional risks for type h 1.5 baseline �j 23,180 84,800 10,524
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of vaccine discovery and hospital capacity also have a significant effect on WTP, 
although the effects are less pronounced.

Figures  1, 2 and 3 further inspect how WTP varies as a few key parameters 
change. Figure 1a shows that a higher discount rate reduces the social WTP mono-
tonically given the numbers in the baseline calibration in Table 2. Figure 1b shows, 
however, that given a low probability of vaccine discovery and relatively ineffective 
interventions, a higher discount rate may increase the social WTP. Figure  2 con-
firms the intuition that a higher probability of vaccine discovery increases the incen-
tive to push the risk forward but at the same time reduces the overall risk of future 
infections (i.e., there are fewer lives to be saved), thereby reducing the social WTP 
at sufficiently high levels of �. Figure 3 shows the ambiguous impact of the base-
line probability of infection on the social WTP. As discussed in Sect. 2.2., given a 
strong incentive to flatten the pandemic curve, social WTP tends to increase with a 
higher probability of infection. However, when that incentive is reduced, as is the 
case when vaccine discovery is unlikely or capacity constraints are less important, a 
higher infection risk may result in a lower social WTP.

Figures 4a and 4b show the contribution of expected health-care capacity short-
ages to social WTP (i.e., how much lower WTP would be if capacity was uncon-
strained) and the contribution as a percentage of social WTP, respectively, for dif-
ferent levels of available capacity and for two different probabilities of vaccine 
discovery. Noticeable, as described in Sect. 2.2.2, capacity constraints play a much 
bigger role when vaccine discovery is unlikely. For instance, for K = 100, 000 the 
capacity constraint contributes about 25% of the social WTP if � = 0.1 but more 
than 50% when � = 0 , for the baseline value K = 1, 000, 000 the capacity constraint 
contributes about 15% of the social WTP if � = 0.1 but more than 25% when � = 0.

4  Discussion and conclusions

Key characteristics of pandemics such as COVID-19 include significant uncertainty 
over the timing of vaccine discovery, the possibility of health-care capacity short-
ages, and large heterogeneity in the degree of vulnerability to virus infection. In this 
paper, we presented a model that incorporates these features to the standard WTP 
model of morbidity/fatality-risk reduction and we presented some suggestive evi-
dence of the significance of these features.

We showed that the social WTP for a sizeable reduction in infection risk dur-
ing a pandemic can be quite large, in the range of $3 T to $7 T (15 to 35% of 2019 
U.S. GDP). The social WTP is particularly large at low levels of the social discount 
rate, while the probability of vaccine discovery and the risk of health-care capac-
ity shortages also play a significant role. Are the potential benefits large enough to 
justify the measures adopted? On top of revealed preference, the answer seems to be 
positive. For example, Barro et al. (2020a, b) argue that the costs of the Great Influ-
enza Pandemic of 1918–1920 represent a plausible worst-case scenario for a large 
epidemic like COVID. In that case, they estimate that GDP decreased by about 6% 
and consumption by about 8%. In the case of COVID, first-quarter GDP in the U.S. 
contracted by almost 5% and consumption by almost 8%, and there are arguably 
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many other costs beyond reduced economic activity, but to the extent that economic 
restrictions are not extended for a long period, all measures indicate that the costs 
will be below the expected benefits in terms of lives saved and disease costs avoided 
-at least on an economic/statistical sense.

While the estimated benefits of mitigation are large in absolute terms, and in 
line with other papers that have performed cost–benefit analyses in the context 
of COVID-19 [e.g., Greenstone and Nigam (2020), Scherbina (2020) and Thun-
ström et  al. (2020)], they are somewhat lower than typical estimates of the value 
of statistical injury found in the literature when considering the large number of 
infections avoided. For example, compared to our estimates ( SVSI(�) = $35, 490 , 
Sh
VSI

(�) = $84, 975 , and Sl
VSI

(�) = $19, 188 ), Viscusi and Aldy (2003) find that most 
studies have estimates of VSI in the range of $29,000–$100,000 per injury (in 2020 
dollars). The U.S. Department of Health and Human Services (2016) recommends 
valuing a quality-adjusted-life-year at approximately $250,000-$800,000 (2020 dol-
lars), which, given our assumption of zero utility during the three months in which 
the individual gets sick, would correspond to a loss of $62,500-$200,000 for those 
infected. As another reference point, out calibration generates a social WTP per 
life saved of about $2.4 million, which is also in the lower range of current VSL 
estimates [e.g., Viscusi and Aldy (2003), Robinson and Hammitt (2016) and U.S. 
Department of Health and Human Services (2016)].

The likely underestimation of VSI and VSL could be the result of our simplifying 
assumptions on individual and social preferences. In particular, a higher WTP than 
the one we estimated may be justified if individuals are risk averse, if there is uncer-
tainty over the epidemiological parameters and individuals are ambiguity averse [see 
Treich (2010) and Bleichrodt et al. (2019)]—something which is likely to play an 
important role at the beginning of the pandemic—or if the social utility function 
assigns greater weight to those more vulnerable.

Another key simplifying assumption of our model is that the infection rate remains 
constant once an intervention is in place.9 This assumption allowed us to derive 
closed form solutions and to provide insights of the comparative statics of vaccine 
discovery, health-care capacity constraints, and others. However, our model may miss 
some of the significant insights provided by economic-epidemiological models which 
place greater emphasis on the short-term dynamics of the epidemic [e.g., to evaluate 
the optimal mitigation policy over the course of the pandemic, as done, for example, 
by Acemoglu et al. (2020), Alvarez et al. (2020), and Jones et al. (2020)].

Finally, a key assumption driving large differences in WTP is that WTP differs by 
the degree of disease vulnerability but not (inversely) by age. If willingness to pay is 
lower at an old age, as some studies suggest it is [see e.g., Aldy and Viscusi (2008)], 
our calibration may overestimate differences in WTP and also the social WTP (e.g., 
the elderly, who are largely vulnerable, may be willing to pay as much as the young, 
who are largely relatively safe). In effect, since the cost of social distancing is likely 

9 In standard epidemiological models (e.g., the SIR model) the likelihood of infection depends on the 
stocks of infected and susceptible individuals at any given time (see Atkeson (2020) for an introduction 
to SIR models).
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age-dependent, a more effective alternative to the uniform policies studied here and 
adopted by many countries would seem to be the adoption of an age-dependent miti-
gation strategy, with stricter confinement of senior citizens [see e.g., Acemoglu et al. 
(2020) and Gollier (2020)]. Or, to put it differently, the use of strong, uniform policies 
may impose an unnecessarily large redistribution of well-being from young, healthy 
individuals to groups of vulnerable individuals.

In sum, our analysis is suggestive, but preliminary. Much theoretical and empirical 
analysis remains to be done to evaluate the proper policies to reduce morbidity and 
mortality risks during an epidemic and, at least as importantly, to analyze the pecuniary 
and non-pecuniary costs of those interventions.
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Appendix: derivations of the main equations in the text

Equation 4

Given a probability of hospitalization ph = min
(

1,
K

pSpIM

)

 , expected utility can be writ-
ten as

Equivalently,

If the capacity constraint does not bind, we have ph = 1 and

If the constraint binds, using the definition G = pSpIM − K we obtain

which is Eq. 4 in the text.

Equation 5

Willingness to pay CK(�) can be written as follows
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Solving for CK(�),

Equation 7

Willingness to pay CS(�) can be written as follows

Solving for CS(�)

Rearranging,

with qh =
�NVh{pI(1−�)}

(M−N)W+N[(1−�)Vb{pI(1−�)}+�Vh{pI(1−�)}]
 and 

ql =
(1−�)NVb{pI(1−�)}

(M−N)W+N[(1−�)Vb{pI(1−�)}+�Vh{pI(1−�)}]
.

Social WTP in the complete model (Eqs. 10 and 11)

Recall that new cases at time t equal pI
(

1 − pI
)t
N , of which a proportion 

[

(1 − �)pS + �
(

pS + �S

)]

 is hospitalized. Given period capacity constraints K, the 
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Similarly, expected utility for high-risk individuals (i.e., those with probability of 
severe sickness pS + �S , mortality risk pD + �D if hospitalized, and pDK + �DK if 
not hospitalized) is

Notice that, as stated in Sect. 2.2.2, capacity shortages (captured by the second 
term in the equations above) are more detrimental to high-risk individuals since 
they are more likely to need hospitalization (i.e., 𝜔S > 0 ) and more likely to die 
(i.e., 𝜔DK − 𝜔D > 0 ) when the health-care system is overwhelmed.

To simplify notation, let us suppose, as we do in the calibration, that m = 0 . It 
follows that social WTP out of current income is
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