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We study the destabilizing effect of hedging strategies under Markovian dynamics with
transaction costs. Once transaction costs are taken into account, continuous portfolio
rehedging is no longer an optimal strategy. Using a non-optimizing (local in time)
strategy for portfolio rebalancing, explicit dynamics for the price of the underlying asset
are derived, focusing in particular on excess volatility and feedback effects of these
portfolio insurance strategies. Moreover, it is shown how these latter depend on the
heterogeneity of the insured payoffs. Finally, conditions are derived under which it may
be still reasonable, from a practical viewpoint, to implement Black–Scholes strategies.
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Introduction

Standard option pricing literature relies on the hypothesis that the dynamics of
the underlying asset are independent of the hedging strategy. Dynamic delta
hedging strategies and portfolio insurance require to sell the underlying asset
if its price decreases, while they require to buy if its price increases. The
hypothesis of independence between hedging and price dynamics corresponds
to the assumption that the market for the underlying asset is perfectly liquid.

Positive feedback effects from dynamic delta hedging strategies have been
studied recently assuming that the market for the underlying asset is only
finitely liquid, that is, relaxing one of the major assumptions of the Black–
Scholes model that the market is perfectly elastic1 (see, for example, Gennotte

1 Brennan and Schwartz (1989), on the contrary, study the effects of portfolio insurance on

financial markets abstracting from possible liquidity problems. They assume that agents are

only concerned with long-term prospects of the assets and do not change their expectations in

reaction to changes in current prices. As a result, markets are very liquid and the feedback

effects of hedging on volatility become very small.
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and Leland, 1990; Donaldson and Uhlig, 1993; Frey and Stremme, 1997; Sircar
and Papanicolaou, 1998; Schönbucher and Wilmott, 2000). It has been shown
that in this case portfolio insurance activity has a destabilizing effect on the
dynamics of the price of the underlying asset. In particular, it increases price
volatility. Frey and Stremme (1997) study the feedback effects of dynamic
hedging strategies on the volatility of the market equilibrium price. They derive
the tracking error, show that an overinvestment is required and derive the best
volatility used by programme traders in calculating their trading strategy.
Sircar and Papanicolaou (1998) study the interaction between reference traders
and programme traders and the feedback effects of programme traders on the
underlying asset, deriving a feedback-adjusted option price and the optimal
hedging strategy. Frey (1998), in a continuous time version of Jarrow (1992,
1994), study the replication of derivative securities from the viewpoint of large
traders whose trades have a non-negligible effect on the asset price. In a similar
vein, Schönbucher and Wilmott (2000) discuss the pricing, hedging and
replication of options if a larger trader, for whom the market is illiquid,
interacts with small traders. Among the contributions related to the role of
portfolio insurance strategies some relevant papers have demonstrated the
possibility of multiple equilibrium prices in illiquid markets. Gennotte and
Leland (1990) show that information differences among market participants
can cause markets to be relatively illiquid and discontinuities (or crashes) can
occur even with relatively little hedging. Like Gennotte and Leland (1990),
Donaldson and Uhlig (1993) show that the existence of atomistic portfolio
insurers increase the variance of possible equilibrium prices and can lead to
situations with many potential equilibrium prices for a single set of
fundamentals, unless large portfolio insurers act in a centralized way.

All the above-mentioned papers assume that programme traders can buy
and sell assets without incurring transaction costs. But, as a matter of fact,
transaction costs are non-negligible in asset markets. Our paper, which is most
closely aligned with Frey and Stremme (1997), extends the literature on market
equilibrium models with feedback effects caused by dynamic hedging to the
case of transaction costs.

If we introduce transaction costs, then it is no longer optimal to adjust
the portfolio continuously. There are two main approaches in the literature
taking the effects of transaction costs into account: the first considers discrete
portfolio adjustments, where the time step of portfolio rebalancing is
exogenously given, while the second considers traders as continuously
monitoring the price of the underlying asset, although adjusting their portfolio
only if the gain from adjustment is larger than the cost of adjustment. This
latter approach can be subdivided into two further approaches: the first is
called local in time (Leland, 1985; Hoggard et al., 1994), whereas the second
is called global in time (Davis et al., 1993; Whalley and Wilmott, 1997;
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Constantinides and Zariphopoulou, 1999, 2001). The former is a non-
optimizing approach, where rehedging is based on minimizing the variance
of the hedged portfolio, while the latter is an optimizing one and is based on
utility maximization and stochastic optimal control. The option value is
obtained by a comparison of the maximum utilities of trading with and without
the obligation of fulfilling the option contract at expiry (for a review see,
for example, Wilmott, 2000). In this framework, Davis et al. (1993) consider
European option pricing with proportional transaction costs charged on sales
and purchases of stock. Whalley and Wilmott (1997) provide an asymptotic
analysis of Davis et al. (1993) in the limit of small transaction costs.
Constantinides and Zariphopoulou (1999, 2001) derive in closed form bounds
to the reservation price of a call option for a large class of utility functions.

All these papers are concerned with the pricing of derivatives in the presence
of transaction costs, but do not deal with the hedging effects in a market
model.

Our paper considers a ‘‘finitely liquid’’ market model and, following a local
in time approach, assumes that hedging takes place at flexible stochastic
trading periods, instead of fixed-interval times, and that transaction costs are
fixed, instead of proportional.2

Once transaction costs are taken into account, an appropriate hedging
strategy has to be found since it is no longer optimal to re-hedge immediately
the portfolio as the asset price changes. In his seminal paper Leland (1985) first
introduced proportional transaction costs and developed a pricing model with
a modified option replicating strategy depending on the level of transaction
costs and the revision interval. Such strategy replicates the option inclusive
of transaction costs, with an error that is uncorrelated with the market and
is claimed to approach zero as the revision period becomes shorter. Inclusive
of transaction costs, the bid–ask spread of the underlying asset becomes
larger and the accentuation of up and down movements of the asset price is
modelled as if the volatility of the actual asset price is higher. Kabanov and
Safarian (1997) calculate the limiting error in Leland’s hedging strategy for
the approximate pricing of the European call. They partially correct a result
in Leland (1985), showing that such limiting error equals zero only when the
level of transaction costs decreases to zero as the revision interval tends to
zero. Bensaid et al. (1992) deal with a discrete time model with proportional
transaction costs and derive optimal portfolios sequentially, finding

2 The model could be extended trivially in order to consider also proportional transaction costs.

For a discussion on transaction costs and their empirical estimation see, for example,

Hasbrouck (2009).
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dominating strategies of the (S,s)-type and a range within which the derivative
price should lie, defining its bid–ask spread.

Most above-mentioned papers with transaction costs assume a given fixed-
revision interval. In this paper instead we consider a stochastic revision
interval. We introduce adjustment hazard functions for each programme trader
in a way which is new in this literature. Following Whalley and Wilmott (1993)
and Henrotte (1993), we define a confidence level for the deviation of the risky
asset position from the perfect hedge such that for each agent inaction is
optimal as long as the hedging imbalance level is below a tolerance level H0,
while the position should be rebalanced once the hedging imbalance level is
above H0. The value H0 gives a measure of the maximum expected risk in the
portfolio.

We assume that H0 is partly deterministic and partly stochastic: the former
captures the influence of transaction costs, such as trading fees, whereas the
latter captures stochastic contingencies. Given these assumptions, an adjust-
ment hazard function (that is, the probability that the trader rebalances his
position conditional on his imbalance level) for each programme trader can be
defined. Following Caballero and Engel (1993, 1999), we study the aggregate
dynamics of the adjustment hazard rates. For a given asset price level
we calculate the average aggregate demand of the programme traders using the
distribution of imbalance levels. Then, the resulting price dynamics of the risky
asset are derived and the average size of the adjustment is characterized.

Our main results are in keeping with the literature on increased market
volatility from hedging strategies and on the fact that the insurance activity of
programme traders together with a finite market liquidity may lead to market
destabilization and eventually to a market collapse (see, for example, Gennotte
and Leland, 1990).3 Our results are consistent with an overestimation of
implied volatility when applying the Black–Scholes formulae (see, for example,
Rubinstein, 1985; Dumas et al., 1998; Platen and Schweizer, 1998; Cetin et al.,
2006) and offer additional insight into the excess volatility puzzle.4 As
discussed in ‘Positive feedback effects from hedging’ section, in our model
excess volatility is driven by transaction costs, liquidity issues and the aggregate

3 The portfolio insurance trading strategies are often implemented on a large scale and yet the

liquidity of their market is sometimes very limited. As in the case of the October 1987 stock

market crash, some empirical studies and even official reports (i.e., the Brady Commission

Report) suggest that portfolio insurance trading and replicating strategies contribute to

aggravate the effects of the crash.
4 The excess volatility puzzle and some explanations of its possible sources have been discussed in

the literature starting from Shiller (1981) and LeRoy and Porter (1981). Most papers focus on

heterogeneity of information and beliefs and liquidity issues (see, for example, Le Roy (1989)

and Shiller (2003) for reviews).
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characteristics of programme traders. In particular, we specify in which way
markets are finitely liquid when transaction costs are introduced and the role of
transaction costs in determining the size and the frequency of adjustment. Our
paper provides results that are consistent with the approach of Cetin et al. (see,
for example, Cetin et al., 2004; Cetin et al., 2006; Cetin et al., 2007), although
they do not deal with models of feedback effects. Instead of concentrating on
the feedback effects that govern the dependence of the equilibrium stock price
on the portfolio actions of programme traders, as we do in our paper, they
have a reduced form illiquidity model, introducing a supply curve which
excludes strategic trading and where liquidity costs are increasing in the
position to liquidate. One major result of Cetin et al. is that the continuous
trading strategies of arbitrarily small quantities incur no liquidity costs, while
trading and also optimal hedging in discrete time produce a non-zero liquidity
premium for options, which is also confirmed in their empirical work (see Cetin
et al., 2006).

Finally, our paper has some relevance in an insurance context too. Put
replication trading is often used in insurance contracts. Many insurance
contracts that are used today are derived from replicating strategies for
derivative securities. The destabilizing effects may be especially strong in
markets with low liquidity. This is often the case of insurance markets and
financial markets dealing with products with an insurance content (for
example, see Gibson et al., 2008). A model like ours provides a further
contribution explaining the destabilizing effects that may emerge in markets
with low liquidity.

The paper is organized as follows. In ‘The basic model’ section, the
adjustment hazard function is formally introduced and the model is presented.
‘Positive feedback effects from hedging’ section contains the main results.
Finally, ‘Conclusion’ section concludes.

The basic model

Suppose that there are two types of traders operating in a market, where there
is a risky asset and a riskless one (a pure discount bond): programme traders
and reference traders. Programme traders use a dynamic hedging strategy,
whereas reference traders are small price takers, which include market makers
and market timers, providing liquidity for market transactions. In what
follows, we do not model the reference traders’ investment problem explicitly,
but rather their aggregate behaviour. We assume that there is a continuum of
reference traders, such that the effects of transaction costs on the aggregate
demand function of the reference traders are negligible. The reference traders
are unaware of the programme traders’ presence and trading strategy (so that
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we can avoid strategic trading). Furthermore, we suppose that reference traders
have perfect information about the fundamentals of the risky asset. The
aggregate demand function of the reference traders is denoted by D(t,Ft,St),
where S is the price of the risky asset, t is time and F can be interpreted in
different ways. For example, Frey and Stremme (1997) and Sircar and
Papanicolaou (1998) assume F to be the aggregate income of the reference
traders, whereas Platen and Schweizer (1994) assume F to be an unspecified
liquidity demand, and others assume F to be the fundamental value of the firm.
We follow this latter approach, and make the following assumptions about the
aggregate demand of the reference traders:

Assumption 1

(a) DAC2: [0,N)�Rþ
2 -R;

(b) there exists a sufficiently large d>0 such that qD/qSp�d;
(c) qD/qF>0;
(d) for any t, F, limS-þND(t,F,S)¼0, limS!0þ Dðt;F;SÞ ¼ þ1

Assumption 1(b) indicates that as the asset price increases, demand decreases,
so that, everything else being equal, the reference traders would like to hold more
assets if the price is low and fewer if it is high. Economically, ruling out the
derivative to be zero means that demand does react to price changes; otherwise it
would not be possible to find an equilibrium by adjusting the price and the
market would be illiquid. Moreover, it is required that demand sufficiently reacts
to price changes, as will become clear in ‘Positive feedback effects from hedging’
section (see Proposition 2). Assumption 1(c) means that as the fundamental
value of the asset increases, demand increases as well.5

Let us normalize the total supply of the risky asset to one. Thus, in the
absence of programme traders, equilibrium is guaranteed by the following
market clearing condition

Dðt;Ft;S
�
t Þ ¼ 1: ð1Þ

For every pair (t,Ft) Eq. (1) has exactly one solution in St denoted by
j(t,Ft). Existence is guaranteed by Assumptions 1(a) and 1(d); uniqueness
follows from strict monotonicity of D with respect to S, which is guaranteed by
Assumption 1(b). Assumption 1(b) together with the implicit function theorem
implies that j is smooth. Thus, the equilibrium asset price, that is S�

t ¼j(t,Ft),
is a function of its fundamental value. We call S�

t the normal price.

5 Assumption 1 could be relaxed, following a compactness argument, where the above properties

are satisfied by a suitable sequence of Dn(.), n¼1, 2 y converging uniformly to D (see also Frey

and Stremme, 1997).
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We assume that the dynamics of the fundamental value of the risky asset
follow a diffusion process of the form

dFt ¼ mFðFt; tÞdtþ sFðFt; tÞdWt ; ð2Þ

where Wt denotes a standard Wiener process. The assumption of Markovian
dynamics for F is quite standard in this literature (see, for example, Frey and
Stremme, 1997). Given the market clearing condition (1) and the stochastic
process for the fundamental value (2) we can determine the dynamics of the
asset price St*. We follow Platen and Schweizer (1998) in deriving the dyna-
mics of St*. Applying Ito’s Lemma to the equilibrium asset price St*¼j(t,Ft) we
have that

dS�
t ¼ jtdtþ jFdFt þ

1

2
jFFðdFtÞ2: ð3Þ

For each value of f and t, s¼j(t, f ), and D(t, f,j(t, f ))¼1 hold. Con-
sequently, using the implicit function theorem we obtain jt¼�Dt/Ds,
jF¼�DF/DS and jFF ¼ � 1

DS
DFF � 2DFS

DF

DS
þDSS

DF

DS

� �2
� �

. Substituting these

results into (3), we obtain, after using (2) and rearranging terms,

dS�
t ¼ mSðS�

t ; tÞdtþ sSðS�
t ; tÞdWt; ð4Þ

where

sSðS�
t ; tÞ ¼ �sFðFt; tÞ

DF

DS
;

mSðS�
t ; tÞ ¼ � 1

DS

"
Dt þDFmFðFt; tÞ þ

1

2
DSS sFðFt; tÞ

DF

DS

� �2

þ 1

2
DFFðsFðFt; tÞÞ2 �DSFðsFðFt; tÞÞ2

DF

DS

#
:

ð5Þ

In the next section, we are going to study the programme traders’ aggregate
demand. Then, this aggregate demand is added to the reference traders’
demand in (1) and the implications for the dynamics of the risky asset price are
studied.

Aggregate demand of programme traders

Let us first specify the hedging strategy of a single programme trader whose
portfolio consists of a European option with strike price K and time to
maturity t and a position on G underlying assets. Later on, we aggregate the
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hedging strategies among different strike prices and times to maturity.6 We
distinguish between two types of volatilities: the input volatility s and the
equilibrium market volatility sS(.). The former is used by programme traders
to compute hedging strategies, whereas the latter emerges as an equilibrium
(market-clearing) outcome. In this section, we describe the programme
traders’ aggregate demand and therefore input volatility s is used, whereas
in ‘Positive feedback effects from hedging’ section a consistency condition
is derived where the input volatility s coincides with the endogenously
found equilibrium market volatility sS(.). Given the input volatility s, we
denote by V(S, s, t,K) the option value, where S is the current underlying
asset price, whose returns follow a geometric Brownian motion with drift m.
Let Z¼Z(S, s, t,K)¼D(S, s, t,K)�G, with D S; s; t;Kð Þ ¼ qVðS; s; t;KÞ=qS,
where Z is called the hedging imbalance.7

In case of no transaction costs, continuous adjustment of the portfolio is
optimal. We consider here transaction costs in the form of fixed costs of
adjustment, where continuous adjustment of the portfolio is no longer
optimal. A portfolio adjustment is assumed to occur only if the hedging
imbalance Z exceeds a pre-determined tolerance level, in which case a
perfect hedge is established. This adjustment strategy is called in the literature
an (S,s)-strategy,8 where Z, once hitting a pre-defined threshold, jumps to 0.
In the present context, we consider a stochastic threshold H0(x, c), which
is the tolerance level for |Z|. In H0(x, c), cX0 is the deterministic component,
which captures the influence of the size of the transaction costs on the
confidence level, while x is the stochastic component which captures
the influence of stochastic contingencies on the confidence level (these
may also include the stochastic component of transaction costs; see, for
example, Leland, 1985). Thus, at time t, given the realization of xt, the trader
rebalances his position if his imbalance level |Zt| is larger than the threshold
H0(xt, c).

Since the tolerance level is stochastic, the adjustment depends on the
realizations of these contingencies and therefore the hedging strategy can be
described in terms of probabilities. More formally, given Zt and assuming that
the probability distribution of xt is i.i.d. for each programme trader and

6 Observe that a single programme trader may possess a portfolio consisting of a mixture of

European options with different strike prices and times to maturity and this is taken into

account in the aggregation procedure.
7 Note that we characterize the programme traders’ demand function in terms of deviations from

the delta-hedging strategy, which is independent of the drift m. Therefore, the programme

traders’ demand is unaffected by m.
8 For a discussion of the basic problem see Dixit (1993).
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independent of time (see Caballero and Engel, 1999), we can write the
probability of adjusting the portfolio at time t:

hðZt; cÞ ¼ Pr½H0ðxt; cÞpjZtj�:

h(.) is the adjustment hazard function and depends on the hedging imbalance
level Z and on the level of the deterministic component c. We make the
following assumptions about h(Z, c):

Assumption 2

(a) h( � ) is a smooth function;
(b) hZ and hZZ are bounded and hZ(Z, c)X0;
(c) hc(Z, c)o0;
(d) limc-0h (Z, c)¼1, limc-0 hZ(Z, c)¼0 and limc-N h(Z, c)¼0.

Assumption 2(b) gives technical conditions that will be used in ‘Positive
feedback effects from hedging’ section and states that the probability of
adjustment does not decrease as the hedging imbalance level increases;
Assumption 2(c) states that the probability of adjustment increases as the
size of the transaction costs decreases. Assumption 2(d) implies that, if
the size of the transaction costs is vanishing small, then we have continuous
adjustment or dynamic delta hedging, whereas, if the transaction costs are
infinitely large, then the probability of portfolio adjustment becomes vanishing
small.

The hedging imbalance level Z has a common element for each programme
trader, which is the price of the underlying asset S, while there are
also idiosyncratic components such as the strike price K and the time to
maturity t. Thus, as the price of the underlying asset changes, the hedging
imbalance level for each programme trader changes as well, while the
way it changes depends on the distribution of strike prices and times to
maturity.

To obtain the programme traders’ aggregate demand we need to aggregate
the hedging imbalance levels across traders using a cross-sectional distribution.
At time t, given the asset price St and assuming that all traders use the same
input volatility,9 traders’ imbalances differ in K and t. We are going to assume
a continuous and random influx and outflux of programme traders from the
asset market, so that the average composition of payoffs to be replicated
remains almost constant over time. Thus, we have that the average demand of

9 This assumption is justified since later on we calculate the input volatility in a consistent way.
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programme traders at time t is given by

CðS; s; cÞ ¼
Z
<2

þ

ZðS; s; t;KÞhðZðS; s; t;KÞ; cÞuðdK� dtÞ; ð6Þ

where u has a smooth density function with respect to a Lebesgue-measure
and represents the distribution of strike prices K and times to maturity t in the
portfolio. Thus, expression (6) represents the demand for the underlying
asset of the programme traders at time t. We are interested in showing how this
demand changes as the price of the underlying asset changes.

Consider a change in the price of the risky asset of size dS. Using expression
(6) we have:

CðSþ dS; s; cÞ ¼
Z
<2

þ

½DðSþ dS; s; t;KÞ � DðS; s; t;KÞ þ ZðS; s; t;KÞ�

�hðDðSþ dS; s; t;KÞ � D S; s; t;Kð Þ þ Z S;s; t;Kð Þ; cÞ
�uðdK� dtÞ:

Taking Taylor expansion of D(Sþ dS) and h(D(Sþ dS)�D(S)þ Z(S),c)
around S and Z respectively, we have

DðSþ dSÞ � DðSÞ ¼ DSdSþ 1

2
DSSðdSÞ2;

and

hðDðSþ dSÞ � DðSÞ þ Z; cÞ ¼ hðZ; cÞ þ hZðZ; cÞ DSdSþ 1

2
DSSðdSÞ2

� �
þ 1

2
hZZðZ; cÞ DSdSþ 1

2
DSSðdSÞ2

� �2

:

Now we can calculate dC(S, s, c)¼C(Sþ dS, s, c)�C(S, s, c) as follows:

d CðS; s; cÞ ¼
Z
<2

þ

(
DSdSþ 1

2
DSSðdSÞ2

� �
hðZ; cÞ þ hZðZ; cÞ
�

� DSdSþ 1

2
DSSðdSÞ2

� �
þ 1

2
hZZðZ; cÞ DSdSþ 1

2
DSSðdSÞ2

� �2
#

þZhZðZ; cÞ DSdSþ 1

2
DSSðdSÞ2

� �
þ 1

2
ZhZZðZ; cÞ DSdSþ 1

2
DSSðdSÞ2

� �2
)

�uðdK� dtÞ:
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Since (dS)y¼0 for y>2 we obtain, after rearranging terms

dCðS; s; cÞ ¼dS

Z
<2

þ

hðZ; cÞ þ ZhZðZ; cÞ
� 	

DSuðdK� dtÞ

þ 1

2
ðdSÞ2

Z
<2

þ

hðZ; cÞ þ ZhZðZ; cÞ
� 	

DSS



þ 2hZðZ; cÞ þ ZhZZðZ; cÞ
� 	

ðDSÞ2
o
u dK� dtð Þ:

Let us introduce the following technical assumption:

Assumption 3 There exist a function u1 such that u dK� dtð Þ ¼ u1(K,t)dKdt
where u1 has a smooth density function with respect to a Lebesgue measure; u1
has a compact support in Rþ� 0;1½ Þ:

Assumption 3 implies that the distribution of strike prices/times to maturity
and, consequently, the distribution of hedging imbalance levels are relatively
heterogeneous. It will become clear that under Assumption 3, the feedback
effects on market volatility remain finite (see Proposition 2). Using
Assumption 3 we can write

dCðS; s; cÞ ¼ CSðS; s; cÞdSþ 1

2
CSSðS;sÞðdSÞ2; ð7Þ

where

CSðS; s; cÞ ¼
Z
<2

þ

~hðZðS; s;K; tÞ; cÞDSðS; s;K; tÞu1ðK; tÞdKdt; ð8Þ

CSSðS; s; cÞ ¼
Z
<2

þ

~hðZðS; s;K; tÞ; cÞDSS þ ~hZðZðS; s;K; tÞ; cÞðDSÞ2
n o
�u1ðK; tÞdK dt;

and where ~hðZ; cÞ ¼ qZhðZ; cÞ=qZ ¼ hðZ; cÞ þ ZhZðZ; cÞ and ~hZ ¼ q ~hðZ; cÞ=qZ ¼
2hZðZ; cÞ þ ZhZZðZ; cÞ�~hðZðS; s;K; tÞ; cÞ indicates the change in the expected size
of adjustment induced by a change in the asset price S. D S(S, s,K, t) is known
in the option pricing literature as the parameter gamma, and it indicates, in the
absence of transaction costs, how often a position must be rehedged in order
to maintain a delta-neutral position. Thus, CS(S, s, c) indicates the average
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adjustment, given a change in the price of the risky asset. CS(S, s, c) depends:
(a) on the average size of adjustment, and thus on the properties of the
adjustment hazard function and the distribution of imbalance levels (i.e.
u1(K, t)); and (b) on the frequency of adjustment, which depends on the average
sensitivity of delta with respect to the price. Notice that Assumption 2 implies
that limc!0 CSðS; s; cÞ ¼

R
<2

þ
DSðS; s;K; tÞu1ðK; tÞdK dt ¼ ~GðS; sÞ, which is

the average value of the gamma, while limc-NCS(S, s, c)¼0. Therefore, if
the size of the transaction costs is vanishing small, then CS(S, s, c) converges
towards the average value of the gamma and so we are back to the case of
dynamic hedging strategies, while if transaction costs are very large, then no
portfolio adjustment occurs at all.

Positive feedback effects from hedging

As we pointed out before, reference traders have perfect information about the
fundamental value of the risky asset. Thus, a reduction in the fundamental
value leads to a decrease in the price of the risky asset. Given this decrease,
some programme traders will sell the risky assets in order to adjust their
portfolio. This leads to a further price reduction, which now will be lower than
the normal level, that is StoSt*. Thus, the action of programme traders leads
to potential gains for liquidity providers, such as market makers and market
timers (see Grossman, 1988). These latter could buy the assets since their actual
price is now lower than their normal price. In this way, liquidity providers have
a stabilizing function. Such ability to exploit gains from excess volatility of
price dynamics depends on some parameters, for example, the cost of capital,
transaction costs (c) and also the information about how many agents are using
a dynamic hedging strategy. If liquidity providers commit insufficient capital,
then their stabilizing function will be reduced.

Let us indicate by rðc;=Þ 2 0; 1½ � a parameter measuring market liquidity,
which is related to the action of liquidity providers (market timers and market
makers) in response to programme traders’ demand, which may affect the price
dynamics. rðc;=Þ is a function of the transaction costs c and = 2 <þ, which
captures the effects of other variables on market liquidity, such as the lack of
information on hedging activity and the cost of capital. We take = and c as
exogenous variables. We make the following assumptions about the behaviour
of rðc;=Þ:

Assumption 4

(a) qr=qc40; qr=q=40;
(b) limc!1 rðc;=Þ ¼ 1;
(c) limðc;=Þ!ð0;0Þ rðc;=Þ ¼ 0;
(d) limc!0 rðc;=ÞX0 and limc!0 rðc;=Þ40 as long as =40:
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Assumption 4(a) implies that an increase in the transaction costs and in the
exogenous parameter = reduces the liquidity of the market; 4(b) implies that as
transaction costs diverge towards infinity, the market is completely illiquid;
4(c) implies that the market is perfectly liquid if the supply of capital is
perfectly elastic, information is perfect and if there are no transaction costs;
4(d) implies that if transaction costs are vanishing small, then the market will
still be illiquid, where the size of illiquidity depends on the size of the
exogenous variable =.

Let us add the demand of programme traders to the demand of
reference traders. This can be done since reference traders are supposed to
be unaware of the presence of programme traders, otherwise they would
condition D(t,Ft,St) on the programme traders’ strategy. Using the market
clearing condition, we have that the equilibrium price has to satisfy the
following condition:

Dðt;Ft;StÞ þ rðc;=ÞCðSt; s; cÞ ¼ 1; ð9Þ

where, given the input volatility s, C(St, s, c) is given by (6). According to
Assumption 4, for ðc;=Þ ! ð0; 0Þ the action of the programme traders has a
negligible effect on the price dynamics of the risky asset. Thus, each deviation
of prices from their normal level will be eliminated through the action of
market timers. On the other side, if the supply of capital is not perfectly elastic
or market timers do not have perfect information, then market timers cannot
completely eliminate the effect of the programme traders’ action (see
Grossman, 1988). Therefore, r c;=ð Þ ¼ 0 denotes a perfectly liquid market,
that is, liquidity providers are able to neutralize programme traders’ demand
and thus there is no deviation of the asset price from its fundamental value; as
long as r c;=ð Þ40 the market for the underlying asset is only finitely liquid,
and for rðc;=Þ ¼ 1 it becomes completely illiquid. Notice that an increase in
the transaction costs increases the weight of portfolio insurance in the
aggregate demand.

Now we can prove the main result.

Proposition 1 Given the input volatility s, the diffusion process governing the
dynamics of the asset price is

dSt ¼ mSðSt; t; s; cÞdtþ sSðSt; t; s; cÞdWt; ð10Þ

where

sSðSt; t; s; cÞ ¼ �DFYsFðFt; tÞ; ð11Þ
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mSðSt; t; s; cÞ ¼ �Y

(
Dt þDFmFðFt; tÞ þ

1

2
DFFðsFðFt; tÞÞ2

�DSFDF Y ðsFðFt; tÞÞ2

þ 1

2
DSS þ rðc;=ÞCSSðSt; s; cÞ½ �

� DF YsFðFt; tÞ½ �2
)

and where Y ¼ 1=ðDS þ rðc;=ÞCSðSt; s; cÞÞ.

Proof We follow the steps of the derivation of the dynamics of the normal
price outlined in ‘The basic model’ section. Using the implicit function theorem
we can write the market clearing condition (9) as St¼x(t,Ft); using Ito’s
Lemma, we have that the dynamics of St are described by the stochastic
differential equation

dSt ¼ xtdtþ xFdFt þ
1

2
xFFðdFtÞ2: ð12Þ

For each value of f and t, s¼x(t, f) and Dðt; f; xðt; fÞÞ þ rðc;=Þ�
Cðxðt; fÞ; s; cÞ ¼ 1 hold. Applying the implicit function theorem we obtain

that xt ¼ �Dt=ðDS þ rCSÞ, xF ¼ �DF=ðDS þ rCSÞ and xFF ¼ � 1
DSþrCS

DFF�½

2DSF
DF

DSþrCS
þ ðDSS þ rCSSÞ DF

DSþrCS

� �2

�. Substituting these results into (12) and

using (2) the result stated in the proposition follows. Obviously, we
need sS(St, t; s, c)X0, and this is true for appropriate values of d in
Assumption 1. &

Expression (11) gives the endogenously determined market volatility,
depending, among other parameters, on the input volatility s used by
programme traders to compute the hedging strategy. From expression (11) in
Proposition 1 we observe that the larger is gamma (D S(S, s,K, t)), the larger is
the price volatility. Since gamma indicates how often a position must be
rehedged on average in order to maintain a delta-neutral position, the higher is
its average value, the more frequently an adjustment occurs. At the same time,
h̃(Z, c) indicates the change in the size of the adjustment, given a change in the
asset price. This latter depends on the properties of the adjustment hazard
function and on the size of the deterministic component of the confidence level
c. Such component depends directly on the size of the transaction costs. Thus,
the larger the transaction costs, the lower h̃(Z, c). On the other side, the larger
are transaction costs, the less liquid is the market, and therefore the weight of
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the demand of portfolio insurance in the aggregate demand of the risky asset
increases. Thus, the effect of a change in transaction costs on the volatility of
the underlying asset is ambiguous a priori. Given Assumptions 2 and 4 we have
that if transaction costs are infinitely high, then limc!1 rðc;=ÞCSðS; s; cÞ ¼ 0
and so on average no portfolio adjustment occurs and there will be no feedback
effect, that is St¼St*. On the other side, if transaction costs are vanishing small,
then, since limc!0 CSðS; s; cÞ ¼ ~GðS; sÞ, we are back to dynamic hedging
strategies where the liquidity of the market rð0;=Þ depends just on the size of
=, and thus we are back to a situation like the one studied by Frey and
Stremme (1997).

We can summarize our results as follows. The volatility of the underlying
asset is larger, the larger are the frequency of adjustment (D S(S, s,K, t)) and/or
the size of adjustment (h̃(Z, c)). The volatility depends also on rðc;=Þ. The more
illiquid is the market, the higher is the influence of the hedging activity of the
programme traders on the dynamics of the underlying asset price, that is, the
stronger is the feedback effect.

Notice that as long as rðc;=Þ40 and coN the dynamics of St are different
from the dynamics of the normal price St*. In particular, comparing (11) with
(5) we observe that there exists an excess volatility which is due to the hedging
activity of programme traders. The size of the excess volatility depends on the
liquidity of the market (rðc;=Þ) and on the aggregate characteristics of the
programme traders (CS(S, s, c)). But since expression (11) for the volatility
sS(St, t; s, c) still depends on the input volatility s, consistency requires that the
input volatility s be equal to the endogenously determined market volatility
sS(St, t; s, c). In other words, we have to solve a fixed-point problem, that is,
find a s such that sS(St, t; s, c)¼s.

In solving the fixed-point problem, we make use of the following Lemma.

Lemma (i) CS is a bounded function of s; (ii) for sXs0, with 0os0oN,
qCS/qs, is a bounded function of s.

Proof (i) The following equalities hold, because of the definition of D and
Assumption 3:

CS ¼
Z Z

qD
qS

~hð:Þv1ðK; tÞ dKdt

¼ �
Z Z

K

S

qD
qK

~hð:Þv1ðK; tÞ dKdt

¼
Z Z

D
q
qK

K

S
~hð:Þv1

� �
dK dt
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since v1 has a compact support. In view of Assumption 2 and since 0pDp1, we
get:

CSj jp
Z Z

q
qK

K

S
~hð:Þv1

� ����� ���� dK dt;

that is, CS is a bounded function of s.
(ii) Recall that qD=qS ¼ N0ðd1Þ=sS

ffiffiffi
t

p
, where d1 ¼

ln
S
K


 �
þ rþ1

2s
2


 �
t

s
ffiffi
t

p .

Then, q
qs

N
0
d1ð Þ

sS
ffiffi
t

p
� �

pN0 0ðd1Þ 1
sS

ffiffi
t

p � N
0 ðd1Þ

s2S
ffiffi
t

p p 1
s0S

ffiffi
t

p þ 1
s2
0
S

ffiffi
t

p ; in view of Assumption 2,

qCS/qs is a bounded function of s for s>s0. &

We are now able to state and proof the following Proposition.

Proposition 2 Under Assumptions 1–4, there exists a solution to the fixed-
point problem sS(St, t; s, c)¼s, provided that rðc;=Þ is sufficiently small,
where sS(St, t; s, c) is given by (11).

Proof Let us put MðsÞ ¼ sS S; t; s; cð Þ ¼ � DFsFðFt;tÞ
DSþrðc;=ÞCSðS;s;cÞ. We have to show

that qMðsÞ=qsj jpMo1, with 0pMp1, in order to apply the contraction
mapping theorem.

We have that

qM sð Þ
qs

���� ���� ¼ DFsFr q
qsCS

ðDS þ rCSÞ2

�����
�����:

Let us first consider the denominator. If |r|oe we get, for some ẽ:

DS þ rCSj jX DSj j � rj j CSj jXd� e~eX
d

2
: ð13Þ

provided that epd/2ẽ. (13) holds because of Assumption 1(b) and the Lemma.
Let us consider the numerator. We get, with suitable constants eee, J:

�DFsFr
q
qs

CS

���� ���� ¼ DFsFj j rj j q
qs

CS

���� ����pDFsF rj jeeepJe:

It holds because of the Lemma. Therefore, qMðsÞ
qs

��� ���p4Je
d2

¼ Mp1, which holds

for epmin d
2~e;

d2

4J

n o
.

Finally, we have to check that sS(St, t; s, c)¼M(s)Xs0, where 0os0oN, as

required by the Lemma. Since �DFsF
DSþrCS

¼ DFsF
�DS�rCS

X
DFsF
�DS

40, we can put

s0 ¼ DFsF
�DS

, which completes the proof. &

Proposition 2, which ensures existence and consistency of the equilibrium,
puts a restriction on the market weight rðc;=Þ of programme traders and thus
makes the notion of ‘‘finitely liquid’’ market more precise.
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Moreover, Proposition 2 specifies the extent to which it is appropriate to use
Black–Scholes strategies for hedging purposes. In practice, most traders base
their strategies on the classical Black–Scholes formula, which assumes constant
volatility s, while we recognized that the correct value is sS(S, t; s, c),
incorporating the feedback effects due to the interaction between the degree of
market liquidity, the size and the frequency of adjustment and transaction
costs. In the presence of feedback effects, Black–Scholes strategies based on the
assumption of a constant volatility produce a tracking error that is almost
surely non-zero. El Karoui et al. (1998) show how to derive a formula for the
tracking error, which measures the difference between the actual and the
theoretical value of a self-financing hedge portfolio for a European call
calculated from the Black–Scholes formula with constant volatility. Proposi-
tion 2 gives us an insight about the behaviour of the tracking error: clearly,
for rðc;=Þ sufficiently small, as required in Proposition 2, the tracking error
vanishes.

Conclusion

We extend the analysis of feedback effects of dynamic hedging strategies on the
underlying asset to the case of fixed costs of transactions in finitely liquid
markets. Our results are in keeping with the literature on increased market
volatility from dynamic hedging strategies. However, in this paper we specify in
which way markets are finitely liquid when transaction costs are introduced
and the role of transaction costs in determining the size and the frequency of
adjustment. Our results can be of interest for applications, since we provide a
quantitative estimate of the increased volatility with transaction costs, which
establishes a precise interaction between the degree of market liquidity, the size
and frequency of adjustment, and transaction costs. We show that the action of
programme traders leads to an excess volatility of the asset price, the size of
which depends on the average size of adjustment and on the average gamma.
The former depends on the properties of the adjustment hazard function and
on the size of transaction costs, whereas the latter indicates how often, on average,
a position must be rehedged in order to maintain a delta neutral position. Finally,
we show how the fixed-point problem for the volatility of the asset price can be
solved, to conclude that from a practical viewpoint it may be reasonable to use
Black–Scholes strategies based on sS(St, t; s, c) for hedging purposes provided
that the difference between sS(St, t; s, c) and s is sufficiently small.
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