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The launch of new innovative longevity-linked products, such as reverse mortgages, increases
the complexity and challenges faced by insurers in implementing an asset-liability
management strategy. With the house price dynamic and a large final payment received at
the end of the policy year, a reverse mortgage provides a different liability duration pattern
from an annuity. In this paper, we propose a generalised immunisation approach to obtain
an optimal product portfolio for hedging the longevity and financial risks of life insurance
companies. The proposed approach does not rely on specific assumptions regarding
mortality models or interest rate models. As long as the scenarios generated by the adopted
models are highly correlated, the proposed approach should be effective. By using stochastic
mortality and interest rate models and the Monte Carlo simulation approach, we show that
the proposed generalised immunisation approach can serve as an effective vehicle to control
the aggregate risk of life insurance companies. The numerical results further demonstrate that
adding the reverse mortgage to the insurers’ product portfolio creates a better hedging effect
and effectively reduces the total risk associated with the surplus of the life insurers.
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Introduction

In the past decade, the longevity phenomenon has increased in human society.
Benjamin and Soliman,1 and McDonald et al.2 confirm that unprecedented
improvements in population longevity have occurred worldwide. The decline in
unanticipated mortality rates has posed a great risk for insurance company operations.
As a testament to the issue’s importance, existing literature proposes many solutions to
mitigate the threat of longevity risk in life insurance. We can classify these studies into
three categories: capital market solutions, industry self-insurance solutions and
mortality projection improvements. Capital market solutions include mortality

1 Benjamin and Soliman (1993).
2 McDonald et al. (1998).
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securitisation (see, e.g., Dowd;3 Lin and Cox;4 Blake et al.;5 Cox et al.6), survivor
bonds (e.g., Blake and Burrows;7 Denuit et al.8), and survivor swaps (e.g., Dowd
et al.9). These studies suggest that insurance companies could transfer their exposure
to the capital markets that have more funding and participants. Cowley and
Cummins10 provide an overview of the securitisation of life insurance assets and
liabilities. Industry self-insurance solutions include the natural hedging strategy of Cox
and Lin,11 the duration matching strategy of Wang et al.,12 and the conditional Value-
at-Risk approach of Wang et al.13 The advantages of industry self-insurance solutions
are that there may exist a lower transaction cost and insurance companies do not need
a liquid market. The insurance companies can also hedge longevity risk by themselves
or with other counterparties. The third solution, mortality projection improvements,
provides a more accurate estimation of and more realistic assumptions regarding
mortality processes. As Blake et al.14 suggest, these studies fall into two areas:
continuous-time frameworks (e.g., Milevsky and Promislow;15 Dahl;16 Biffis;17

Schrager18) and discrete-time frameworks (e.g., Brouhns et al.;19 Renshaw and
Haberman;20 Cairns et al.21). The parameter of uncertainty and model specification in
relation to the mortality process have also attracted more attention in recent years
(e.g., Melnikov and Romaniuk;22 Koissi et al.;23 Wang et al.12).

With the launch of new longevity-linked products, such as reverse mortgages and
equity-linked annuities, life insurance companies’ operations involve more liability
risks and financial risks. These risks in turn increase the complexity and challenges
faced by the insurers in implementing their asset-liability management strategy. How-
ever, some financial risks may not be positively related to each other. For example, in
some markets interest rates and real estate prices were observed to be negatively
correlated. In addition, from a liability perspective, with the house price dynamic and

3 Dowd (2003).
4 Lin and Cox (2005).
5 Blake et al. (2006a, b).
6 Cox et al. (2006).
7 Blake and Burrows (2001).
8 Denuit et al. (2007).
9 Dowd et al. (2006).

10 Cowley and Cummins (2005).
11 Cox and Lin (2007).
12 Wang et al. (2010b).
13 Wang et al. (2010a).
14 Blake et al. (2006b).
15 Milevsky et al. (2006).
16 Dahl (2004).
17 Biffis (2005).
18 Schrager (2006).
19 Brouhns et al. (2002).
20 Renshaw and Haberman (2003).
21 Cairns et al. (2006).
22 Melnikov and Romaniuk (2006).
23 Koissi et al. (2006).
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a huge final payment received at the end of the policy year, reverse mortgages provide
different cash flows and liability durations from those of annuities.

In this paper, we propose a generalised immunisation approach to obtain an optimal
product portfolio for life insurance companies aimed at hedging longevity and financial
risks. We use a delta hedge strategy to mitigate the risks associated with the movements
of these financial risk factors. We also consider the simultaneous shocks to the mortality
curve, interest rate curve and other financial risk factors existing in the product portfolio.
We first adopt the two-factor stochastic mortality model the Cairns-Blake-Dowd (CBD
model)21 to construct future mortality processes and corresponding liability distributions.
We then simulate interest rate curves by using the Cox et al.24 stochastic interest model
(the Cox-Ingersoll-Ross or CIR model). By means of the Monte Carlo simulation of the
movements in the mortality curve, the interest rate curve and related risk factors, we
show that the proposed generalised immunisation approach can serve as an effective
vehicle to reduce the aggregate risk significantly for life insurance companies. Moreover,
adding reverse mortgages to the product portfolio also serves as a risk diversification
strategy. The numerical results further demonstrate that adding the reverse mortgage to
the insurers’ product portfolio gives rise to a better hedging effect and effectively reduces
the total risk associated with the surplus of the life insurers.

The remainder of this paper is organised as follows. We briefly introduce the reverse
mortgage and discuss some important issues in the next section. In the subsequent
section, we introduce the stochastic interest rate and mortality models along with our
proposed immunisation model as a natural hedging strategy for life insurers. In the
section following that section, we demonstrate how our proposed generalised immuni-
sation model can be implemented by using different numerical examples for various
product mixes. Finally, we analyse the simulation results in the penultimate section, and
conclude in the last section.

Reverse mortgage

Since the 1970s, the United Kingdom, the United States and many other countries
have been developing a house mortgage mechanism, known as “Reverse Mortgage” or
“Housing Endowment”, which enables elderly homeowners to consume some of the
home equity but still maintain the ownership and residence of the home. In a typical
reverse mortgage arrangement (see Chen et al.25), the lender advances a lump sum or
periodic payments to elderly homeowners. The loan accrues with interest and is settled
using the sale proceeds of the property when borrowers die, sell or vacate their homes
to live elsewhere. There are various styles of loan services provided by financial
institutions, including:

(a) lump-sum payment: the borrower receives a fixed amount of the entire available
principal limit at closing of the loan;

(b) tenure payments: equal monthly payments are made as long as the borrower lives;

24 Cox et al. (1985)
25 Chen et al. (2010).
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(c) term payments: equal monthly payments are made for a fixed period of months
selected by the borrower;

(d) line of credit: instalments are paid to the borrower at times and in amounts of the
borrower’s choosing until the line of credit is exhausted.

Previous studies suggest that reverse mortgage can help to increase retirement income
for homeowners. Mayer and Simons26 estimate that homeowners can increase their
monthly incomes by at least 20 per cent through a reverse mortgage. The empirical
results of recent research27 support that higher housing prices have a positive impact
on reverse mortgage originations, and reverse mortgage indeed improve the retirement
income for the elderly. Benedict28 and Davidoff29 suggest that annuity insurance
products, long-term care insurance and reverse mortgage are primary tools for
retirement income management. Although reverse mortgages appear to be a useful
way for homeowners to access their equity, the market is current extremely small.
Certain factors could explain the small size of the reverse mortgage market. First, there
are several factors that could discourage homeowners from taking out reverse
mortgages. These include high up-front costs, low borrowing limits, concerns about
future medical expenses and fear of debt. Venti and Wise30 and Caplin31 suggest that
bequest motives and the expectation of moving out may also be major reasons for
stagnation in the U.S. reverse mortgage market.

On the other hand, despite substantial government subsidies and protection, many
lenders have been unable to generate enough profit to justify maintaining costs or risks
for this specialised product, and have exited the market. In addition to low origination
fees and the uncertainties from regulatory and legal problems, the lenders are also
exposed to the following risks: (a) interest rate risk (see Boehm and Ehrhardt32);
(b) longevity risk (see Chen et al.25); (c) housing price risk (see Mitchell and Piggott33);
and (d) borrower maintenance risk (see Ong).34 The overall risk measure can be
referred to as the crossover risk (see Chinloy and Megbolugbe;35 Wang et al.36) that
the outstanding loan balance will not be repaid in full when the loan is terminated
because the loan balance is larger than the property value and the lender will recover
only up to the sale price of the property. The crossover risk is usually insured via
mortgage insurance premiums, and the fair premium is determined by the present
value of the non-recourse provision (see Chen et al.25).

26 Mayer and Simons (1994).
27 Benjamin and Brian (2009), Joan et al. (2010) and Shan (2011).
28 Benedict (2009).
29 Davidoff (2009).
30 Venti and Wise (2000).
31 Caplin (2002).
32 Boehm and Ehrhardt (1994).
33 Mitchell and Piggott (2004).
34 Ong (2008).
35 Chinloy and Megbolugbe (1994).
36 Wang et al. (2007).
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The research models

In this section, we first provide brief descriptions of the two-factor stochastic CBD
mortality model of Cairns et al.21 and the stochastic CIR model of Cox et al.37 We
then describe the house price index dynamic model and introduce the proposed
generalised immunisation approach in this paper.

The two-factor stochastic mortality model

In traditional insurance pricing and reserve calculations, an actuary treats mortality
rates as being constant over time, which means that unanticipated mortality improve-
ments can cause serious financial burdens or even bankruptcy for life insurers. In
actuarial literature, the question of how to model mortality rates dynamically conti-
nues to be an important issue. Earlier developments of stochastic mortality modelling
rely on the one-factor model and the pioneering work of Lee and Carter38 (the LC
model). The LC model is easy to apply and provides fairly accurate mortality
estimations and population projections. More recent studies have proposed the use of
two-factor mortality models. The most distinguishing feature of these models is the
consideration of a cohort effect in mortality modelling.20,39 In particular, Cairns
et al.21 allow not only for a cohort effect but also for a quadratic age effect in their
CBD model. Cairns et al.40 extend their earlier work by comparing an analysis of eight
stochastic models based on the mortality experiences of England, Wales and the
United States. Other developments in two-factor models (e.g., Milevsky and
Promislow;41 Dahl;16 Dahl and M�ller;42 Miltersen and Persson;43 Luciano and
Vigna;44 Biffis;17 Schrager18) employ a continuous-time framework and thus offer an
important means of pricing mortality-linked securities.

Following the recent literature on mortality modelling, we employ a stochastic
mortality model to test the proposed hedging strategy. In particular, we adopt the
CBD model as our mortality model to test the effectiveness of the hedging strategies.
We choose the CBD model as the underlying mortality process for two reasons. First,
the CBD model characterises not only a cohort effect but also a quadratic age effect.
The two factors A1(t) and A2(t) in the CBD model represent all age-general
improvements in mortality over time and different improvements for different age
groups. These two factors reflect the “trend effect” and “age effect”. Thus, the
mortality improvement forecasted by the CBD model is more significant than that of
other mortality models, such as the LC model, because the cohort effect of the CBD
model captures the greater mortality rate dynamics for older consumers, compared to

37 Cox et al. (1985).
38 Lee and Carter (1992).
39 Currie (June 2006).
40 Cairns et al (2007).
41 Milevsky and Promislow (2001).
42 Dahl and Moller (2006).
43 Miltersen and Persson (2005).
44 Luciano and Vigna (2005).
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younger consumers. Second, the CBD model is a discrete time model and is more
convenient to implement in practice. We offer a brief description of the CBD model;
for a more detailed discussion, see Cairns et al.,21 who propose that the mortality curve
has the following logistic functional form:

qðt;xÞ ¼ eA1ðtþ1ÞþA2ðtþ1Þ�ðxþtÞ

1þ eA1ðtþ1ÞþA2ðtþ1Þ�ðxþtÞ ; ð1Þ

where q(t, x) is the realised mortality rate for age x insured from time t to tþ 1.
By setting A(t)¼(A1(t), A2(t))

T, the two stochastic trends A1(t) and A2(t) follow a
discretised diffusion process with a drift parameter m and a diffusion parameter C:

Aðtþ 1Þ � AðtÞ ¼ lþ CZðtþ 1Þ; ð2Þ

where l¼(m1, m2)
T is a 2� 1 constant parameter vector, the Z(t)’s (t¼0, 1, 2,y)

are independent two-dimensional standard normal random vectors, and C is a
2� 2 constant lower-triangular Cholesky square root matrix of the covariance
matrix V of Z(t).

There are two steps to implementing a stochastic mortality model from real
mortality data. The first involves calibrating the model to fit a set of historical data for
mortality experiences in the past. The second is to take the calibrated model and gene-
rate simulations to forecast future mortality rates. We assume that the male
population of the United States includes clients of the insurance product. Thus, we
use the deaths and populations database, in which the ages are distributed from 0 to
114 and the time period from 1969 to 2007, as the input data for calibrating the CBD
model. We briefly describe the deaths and population database as follows.

Annual population data
In this paper, we adopt population data through the Surveillance, Epidemiology and
End Results45 (SEER) programme, which builds a complete and available population
database for each single age person up to the age of 84 years. Those aged 85 and older
make up the last group. The United States Population information is available on the
website for the U.S. Census Bureau.46 Data for sex and age are published in five-year
age groups up to the age of 85 and older.

Annual deaths data
In the United States, the vital statistics are published annually by the Centers for
Disease Control and Prevention and the National Center for Health Statistics.47 The
provisional tables are published in five-year age groups. LifeMetrics48 provides single

45 Surveillance et al. (2010).
46 U.S. Census Bureau (2010).
47 Centers for Disease Control and Prevention (2010).
48 JP Morgan (2007).

The Geneva Papers on Risk and Insurance—Issues and Practice

702



age deaths data from ages 40 to 84 years. For the deaths data of those above the age of
85 years, we refer to the most updated mortality report on the Center for Disease
Control and Prevention (CDC) website.25

After collecting data, we estimate A1(t) and A2(t) using the maximum likelihood
method. The estimated results are shown in Figures 1 and 2. Figure 1 shows that A1(t)
is generally declining over time, which corresponds to the characteristic that mortality
rates exhibit improvement effects for all ages.49 In addition, Figure 2 shows that A2(t)
is generally increasing over time. This suggests that the mortality improvements are
more significant at lower ages than at higher ages. These results are consistent with the
previous research. Based on the estimation of A1(t) and A2(t), we use LifeMetrics to
generate 1,000 scenarios of q(t, x) for x¼50, 60 and 70.

Figure 1. A1(t).

Figure 2. A2(t).

49 Pitacco et al. (2009).
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The stochastic interest rate model

There is a very rich literature on stochastic interest rate models. Some of them are
no-arbitrage models such as the Hull–White model or LIBOR market models.
No-arbitrage models are suitable for pricing fixed income derivatives and are specified
in risk-neutral measures. The others are equilibrium models such as the Vasicek
model50 and CIR model.37 These models require only a small number of parameters.
The parameters of these models can be estimated from historical data and are specified
in real-world measures. The equilibrium models are more suitable for the purpose of
testing hedging strategies. Thus, we select the CIR model to test the effectiveness of
our hedging approach.

The CIR model describes the evolution of the instantaneous short-term interest
rates (short rates) rt as

drt ¼ aðb� rtÞdtþ s
ffiffiffiffi
rt

p
dz;

where a, b and s are constants and z follows a standard Brownian motion. The drift term
of drt is a(b�rt), which ensures mean reversion of the short rate towards the long-run
value b. The diffusion term of drt is s

ffiffiffiffi
rt

p
, which guarantees that the short rate remains

positive. Given the short rate at time u, ru (uot), it can be shown that the short rate at
time t, rt, is, up to a scale factor, a noncentral chi-square distribution. Based on this
result, we are able to simulate 1,000 scenarios of the short rates. The CIR model can
construct the whole interest rates curve based on the levels of the short-rate and model
parameters. Therefore, the simulated 1,000 scenarios of the short rates are sufficient for
our purposes. In our numerical examples in the next section, the parameters in the CIR
model are as shown in Table 1.

The house price index dynamic

In this paper, we use a geometric Brownian motion (also known as a lognormal
process) to model the house price dynamic. Following the assumptions of Kau et al.51

and Szymanoski,52 we use a lognormal process to model the house price dynamic.
The lognormal process of house price H can be described via a stochastic differential

equation of two parameters m and s:

dH ¼ mHdtþ sHdz:

The parameter m is the expected rate of return and the parameter s is the volatility of
the house price.

We use the quarterly data for the House Price Index (HPI) from the first quarter of
1975 to the fourth quarter of 2009 to estimate the parameters m and s. HPI is reported
by the Office of Federal Housing Enterprise Oversight (OFHEO). OFHEO and the
Federal Housing Finance Board (FHFB) were combined to form the new Federal

50 Vasicek (1977).
51 Kau et al. (1993).
52 Szymanoski (1994).
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Housing Finance Agency (FHFA) in 2008. The estimated values for m and s are 5.52
per cent and 3.86 per cent, respectively.

The proposed generalised immunisation approach

To help life insurers achieve a better hedging effect, we propose a general immuni-
sation model that incorporates a stochastic mortality dynamic to calculate the optimal
level of a product mix that includes insurance, annuities and reverse mortgages.

Let q, r and S be the current mortality curve, the interest rates curve and other
financial risk factors, respectively. The current value of the product portfolio with
hedging assets is V(q, r,S). Let us assume that q̂s, r̂s and ŝs are typical shocks of the
mortality curve, the interest rates curve and other financial risk factors, respectively.
These typical shocks can be estimated from the simulated scenarios of the adopted
stochastic models for interest rates, mortality rates and other financial risk factors,
respectively.

It is common to assume that r̂s follows a parallel shift.53 However, other types of
shocks have been proposed in the literature.53,54 In our proposed approach, we use
the Principal Components Analysis (PCA) technique to determine these typical
shocks. In particular, we first simulate n scenarios from each adopted stochastic model
and compute the sample covariance matrix of the simulated scenarios. We then
compute the first principal component of the sample covariance matrix. The first
principal component can then be used to determine the typical shocks of interest. For
a fixed income portfolio, we use the PCA technique to select the most plausible interest
rates shock. This method is considered as an important extension of non-stochastic
risk methodologies based on durations and convexities (Chapter 3, Golub and
Tilman55). More precisely, Dq, Dr and DS are the lengths of q̂s, r̂s and ŝs, respectively.
Vectors qs, rs and Ss are normalised versions of q̂s, r̂s and ŝs. That is, their lengths
are equal to one. In Golub and Tilman,55 the square root of the eigenvalue and the
eigenvector of the first principal component of the covariance matrix of r̂s are con-
sidered to be the most plausible magnitude and the most plausible shape of r̂s. We
extend this idea in our generalised immunisation approach. In particular, the most

Table 1 Parameters of the CIR model used in numerical examples

a Speed of mean reversion 0.15

b Long-run mean of short rate 0.05

s Volatility 0.06

r0 Initial short rate 0.01

53 Willner (1996).
54 Golub and Tilman (1997).
55 Golub and Tilman (2000).
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plausible magnitude (Dq, Dr and DS) of the typical shocks are the square roots of
the eigenvalues of the corresponding first principal component, and the most plausible
shape (qs, rs and Ss) of the typical shocks are the eigenvectors of the corresponding first
principal components.

We denote V as the value of the product portfolio and hedging asset. We assume
that V contains n products and hedging assets and can be regarded as a hedging
programme. Let Vk denote the unit price of the k

th product or hedging asset of V and
wk denote the number of units sold or the number of shares purchased. The value of Vk

is negative if it is a liability and is positive if it is a hedging asset. The mathematical
expression of V is

V ¼
Xn
k¼1

WkVk:

The value of V is not required to be zero. However, if we include cash in the hedging
programme V, then the value of V can be set to zero. For example, in the section of
numerical examples, V represents a surplus and its initial value is set to zero.

Let V(q, r,S) be the initial value of V. From the discussion above, the value of V
after the shocks can be approximated by V(qþDq� qs, rþDr� rs, SþDS�Ss).
Through the multivariate Taylor’s formula, the change in V can be approximated as
follows:

Vðqþ DqqSr rþ DrrSr Sþ DSSrÞ � Vðq; r;SÞ

� qV
qDq

Dqþ eV
qDr

Drþ qV
qDS

DS
� �

þ 1

2

q2V
qDq2

ðDqÞ2 þ q2

qDr2
ðDrÞ2 þ q2V

qDS2
ðDSÞ2

� �

þ q2V
qDqqDr

DqDrþ q2V
qDrqDS

DrDSþ q2V
qDqqDS

DqDS
� �

:

ð3Þ

It is easy to see that the first-order and second-order partial derivatives of V are
linear functions of the wk’s:

qV
qDq

¼
Xn
k¼1

ok
qVk

qDq
;
qV
qDr

¼
Xn
k¼1

ok
qVk

qDr
;
qV
qDS

¼
Xn
k¼1

ok
qVk

qDS
;

q2V
qDq2

¼
Xn
k¼1

ok
q2Vk

qDr2
;
q2V
qDr2

¼
Xn
k¼1

ok
q2Vk

qDr2
;
q2V
qDS2

¼
Xn
k¼1

ok
q2Vk

qDS2
;

q2V
qDqqDr

¼
Xn
k¼1

ok
q2Vk

qDqqDr
;

q2V
qDrqDS

¼
Xn
k¼1

ok
q2Vk

qDrqDS
;

q2V
qDqqDS

¼
Xn
k¼1

ok
q2Vk

qDqqDS
:

ð4Þ
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From Eq. (4), by choosing a suitable wk, we can make

qV
qDq

¼ 0;
qV
qDr

¼ 0;
qV
qDS

¼ 0: ð5Þ

In addition, it is also possible to make

q2

qDq2
¼ 0;

q2

qDr2
¼ 0;

q2

qDS2
¼ 0;

q2V
qDqqDr

¼ 0;
q2V

qDrqDS
¼ 0;

q2V
qDqqDS

¼ 0: ð6Þ

When Eq. (5) holds, we have immunised V against small movements in the mortality
curve, the interest rates curve and other financial risk factors simultaneously. In this
case, V is similar to a zero-duration and zero-convexity portfolios or a delta-gamma-
neutral portfolio. When both Eqs. (5) and (6) hold, we have immunised V against
larger movements in the mortality curve, the interest rates curve and other financial
risk factors simultaneously. In this case, V is similar to zero-duration and zero-
convexity portfolios or delta-gamma-neutral portfolio.

In actual application, it is not required that all of the partial derivatives in Eqs. (5)
and (6) be equal to zero. If a specific partial derivative is zero or close to zero for all
products and assets in V, then we do not need to consider it when choosing the wk’s.
For example, in our numerical examples, q2/qDq2, q2/qDS2, q2V/qDqqDr, q2V/qDrqDS
and q2V/qDqqDS are not considered. In addition, if V contains a large number of
insurance products and invested assets, then Eqs. (5) and (6) are underdetermined
linear equations. This implies that the number of solutions of the wk’s is infinite.
Therefore, it is reasonable to arrive at a unique solution by fixing a percentage of
“key” hedging products or assets. In our numerical examples, a “key” hedging product
is a whole life product. Supposing that there are two hedging strategies that satisfy
Eqs. (5) and (6), then any convex combination of the solutions of these two hedging
strategies also satisfies Eqs. (5) and (6). That is, to include both a term life and whole
life in the hedging programme, we just need to obtain a convex combination of the
solutions for “Hedging Strategy 1” and “Hedging Strategy 2”.

The various partial derivatives in Eqs. (5) and (6) are usually very complex or even
have no closed-form formulas, so we use the finite difference method to compute these
partial derivatives. The most challenging step in applying the finite difference method
is to choose suitable difference sizes in the function parameters. In our approach, we
can simply use the most plausible magnitude (Dq, Dr and DS) computed by the first
principal components mentioned above.

It is important to note that the proposed approach in this paper does not rely on
specific assumptions regarding the mortality models or interest rate models. As long as
the scenarios generated by the adopted models are highly correlated (this is a basic
property for any sensible mortality or interest rate model), the proposed approach
should be effective based on the results of the principal components analysis. Thus,
compared with other asset-liability management models, our proposed approach is
more flexible and much easier to apply. Thus, it can be a more effective tool in
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calculating the product mix or asset allocation strategies according to the needs of the
insurance companies in actual practice.

Numerical examples

To demonstrate our proposed hedging strategy, in this section we construct a numerical
analysis for insurance companies. Assume that an insurance company sells three different
types of products: life insurance, annuities and reverse mortgages. The hedging strategy
depends on the policy condition, such as the issuance age, gender, coverage period,
payment method and so on. The whole-life annuity is issued for a 60-year-old man. The
life insurers pay US$10,000 at the end of each year if the annuitant lives. The whole-life
annuity has no deferred period and the premiums are collected in a single premium. The
life insurer has sold 1,000 whole-life annuity contracts and wishes to hedge its longevity
and interest rate risk by using different insurance products (term life insurance, whole life
insurance and reverse mortgages) and long-term bonds (10-year coupon bonds and
30-year coupon bonds) to hedge the mortality and interest rate risks. The term-life
insurance is issued for a 50-year-old man with a 20-year insurance period. The whole-life
insurance is also issued for a 50-year-old man. For both life insurance products, the
payout benefit is US$1,000,000. We also assume that the life insurer uses the premiums
received to buy two types of long-term bonds. The 10-year coupon bond is issued at a 3
per cent coupon rate with a face value of US$1,000,000. The 30-year coupon bond is
issued at a 5 per cent coupon rate with a face value of US$1,000,000. The reverse
mortgage is provided to a 70-year-old man who has home equity valued at US$1,000,000.

As discussed in the section “Reverse mortgage”, there are four variations of reverse
mortgages. In the numerical examples of this paper, we assume that the insurer provides
a reverse mortgage of the first types. That is, the insurer (lender) makes the payment to
the insured (borrower) in the form of a lump sum payment and not as a fixed annuity.
At the end of the contract, the insurer will receive the market value of the house when
the insured dies or the contract is terminated. Thus, the insurer bears longevity risk
because the insurer will get back the lower part of: (a) the initial value plus accrued
interest, (b) the value of the house; if the house price is higher than the initial value plus
accrued interest, the house owner’s estate will get the residual. On the other hand, the
increase in the value of the house price will also increase the value of the loan. Under this
setting, a reverse mortgage is more like an asset to the insurer. Based on the house price
data for the United States, the house price inflation will be high enough to overcome the
potential longevity risk presented in the U.S. mortality data, especially due to the reverse
mortgage we considered having a low loan-to-value ratio (¼65 per cent). In addition, the
second type of reverse mortgage can be constructed from the first type by converting the
initial loan amount into a fixed annuity. Therefore, the second type of reverse mortgage
can be regarded as a combination of the first type of reverse mortgage and a fixed
annuity. This implies that our approach can also apply to the second type of reverse
mortgage. The basic assumptions are summarised in Table 2.

The total value of the hedged product portfolio (V) depends on mortality rates (q),
market interest rates (r) and/or the market house price index (S). We first simulated
1,000 scenarios for the mortality rate shock, interest rate shock and house price shock
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using the CBD, CIR and lognormal models. It is important to recognise the age effect
under the CBD model. We have three mortality rate shock vectors associated with age
x¼50, 60 and 70. To apply the PCA technique mentioned previously, we concatenate
these three vectors to form a long mortality rate shock vector. Based on these
scenarios, we can compute the most plausible magnitude (Dq, Dr) and the most
plausible shape (qs, rs) via the first principal component of the sample covariance
matrix of the simulated interest rate and mortality curve scenarios.

In addition, we compare the results of the surplus distribution for five different
hedging strategies as follows:

In our numerical examples, we consider different parameter settings in the CIR
model as shown in Table 1. The parameter values of the CIR model are: a¼0.15,
b¼0.05, s¼0.06 and r0¼0.01. The partial derivatives required to compute the holding
amounts for each of the products/investments are reported in Table 3 and the original
portfolio mix without hedging is shown in Table 4. In addition, we conduct the
analyses by not/partially/fully hedging the house price risk in reverse mortgages. In
Hedging Strategy 3, the house price risk in reverse mortgage is not hedged. Hedging
Strategy 4 is a partially hedged strategy that includes a put option to mitigate the
house price risk. The put option is an at-the-money option where maturity equals one
year. The sensitivities to house price DV/DH of reverse mortgage and put option are
0.76 and �0.37, respectively. In Hedging Strategy 5, the house price risk in reverse
mortgage is fully hedged.

The results of the portfolio mix for different hedging strategies are summarised in
Tables 5–8. The results show that the proposed generalised immunisation approach
can serve as an effective vehicle to calculate the required portfolio mix to control the

Table 2 Basic assumptions for the numerical analysis

Product or hedging asset Age/gender Coverage Sum insured Coupon rate Maturity Face value

Whole-life annuity 60 Whole life 10,000

Term-life insurance 50 20 years 1,000,000 — — —

Whole-life insurance 50 Whole life 1,000,000 — — —

Bond 1 — — — 3% 10 years 1,000,000

Bond 2 — — — 5% 30 years 1,000,000

Reverse mortgages 70 Whole life 1,000,000 — — —

Product portfolio

Hedging Strategy 1 Hedged annuity by term-life and long-term bonds

Hedging Strategy 2 Hedged annuity by whole-life and long-term bonds

Hedging Strategy 3 Hedged annuity by reverse mortgage and long-term bonds

Hedging Strategy 4 Hedged annuity by reverse mortgage and long-term bonds with the house price

being hedged by put option

Hedging Strategy 5 Hedged annuity by reverse mortgage and long-term bonds with the house price

being perfectly hedged
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Table 8 Portfolio mix for Hedging Strategy 4 (� 104)

Annuity Bond 1 Bond 2 Reverse

mortgages

Put option Cash

Unit price �21.8 98.8 120 75.8 0.9

Holding amount 1,000 19.8 163.7 29.5 61

Total value of each product/investment �21,800 1,958 19,649 2,236 55 �2,098

Table 3 Partial derivatives computed by finite difference method

Annuity Term life Whole life Bond 1 Bond 2 Reverse mortgages

V �21.8 �15.1 �33.4 98.8 120.2 75.8

DV/Dr 38 25.5 66.4 �163.9 �218 �0.1

DV/Dq �0.6 22.1 54.6 0 0 19.7

D2V/Dr2 �76.1 �47.1 �138.3 285.3 431.7 �1.3

Table 4 Portfolio mix without any Hedging Strategy (� 104)

Annuity Cash

Unit price �21.8

Holding amount 1,000

Total value of each product/investment �21,800 21,800

Table 5 Portfolio mix for Hedging Strategy 1 (� 104)

Annuity Term life Bond 1 Bond 2 Cash

Unit price �21.8 �15.1 98.8 120.2

Holding amount 1,000 26.1 25.1 162.5

Total value of each product/investment �21,800 �394.1 2,480 19,532.5 181.7

Table 6 Portfolio mix for Hedging Strategy 2 (� 104)

Annuity Whole life Bond 1 Bond 2 Cash

Unit price �21.8 �33.4 98.8 120.2

Holding amount 1,000 10.6 21 165.8

Total value of each product/investment �21,800 �354 2,075 19,929.2 150

Table 7 Portfolio mix for Hedging Strategy 3 (� 104)

Annuity Bond 1 Bond 2 Reverse mortgages Cash

Unit price �21.8 98.8 120 75.8

Holding amount 1,000 20 163 30

Total value of each product/investment �21,800 1,976 19,560 2,274 �2,010
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aggregate risk for life insurance companies. The results show that, to hedge the same
amount of longevity risk, the required amounts of the term-life products are greater
than the required amounts of the whole-life products. We can find that the insurer
needs 26.1 units of term life to hedge the annuity in Table 5. However, to hedge the
same amount of the annuity, the insurer only needs 10.6 units of term life in Table 6.
This implies that the whole-life products do have a better hedging effect on the
longevity risk than the term-life products.

The detailed surplus distributions for different hedging strategies are summarised in
Figures 3–8. We find that the standard deviation of the product portfolio (V) without
any hedging strategy is 6,774,633 (Figure 3). The standard deviation of the product

Figure 3. Surplus distribution without any Hedging Strategy (� 104).

Figure 4. Surplus distribution of Hedging Strategy 1 (� 104).

Figure 5. Surplus distribution of Hedging Strategy 2 (� 104).
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portfolio (V) for Hedging Strategy 1 is 137,463 (Figure 4). The standard deviation of
the product portfolio (V) for Hedging Strategy 2 is 144,655 (Figure 5). The standard
deviation of the product portfolio (V) for Hedging Strategy 3 is 298,076 (Figure 6).
The standard deviation of the product portfolio (V) for Hedging Strategy 4 is

Figure 6. Surplus distribution of Hedging Strategy 3 (� 104).

Note: House price risk in reverse mortgage is not hedged.

Figure 7. Surplus distribution of Hedging Strategy 4 (� 104).

Note: House price risk in reverse mortgage is partially hedged with a put option.

Figure 8. Surplus distribution of Hedging Strategy 5 (� 104).

Note: House price risk in reverse mortgage is fully hedged.
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286,926 (Figure 7). The standard deviation of the product portfolio (V) for Hedging
Strategy 5 is 52,786 (Figure 8). From Figures 4 and 5, we can find that there is not
much difference between the results for Hedging Strategy 1 and those for Hedging
Strategy 2. This implies that the hedging strategy using whole-life products did not
exert a more significant risk-reduction effect than did the strategy using term-life
products.

Figures 6, 7 and 8 depict the results with Hedging Strategies 3, 4 and 5, respectively.
From Figure 8 we find that the hedging strategy using a reverse mortgage exerts a
better risk-reduction effect than the other two strategies when the house price risk is
perfectly hedged.56 However, when the house price risk is considered and is unhedged,
the total hedging effect is reduced (Figure 6). It is mainly because the house price
dynamic would introduce the potential return and risk into the portfolio. In addition,
when the house price risk is partially hedged by a short-term put option on the house
price, the risk can be slightly reduced in terms of standard deviation. We find that the
left tail of the surplus distribution in Hedging Strategy 4 is thinner than that of
Hedging Strategy 3 and the right tail is thicker (Figure 7). However, when the house
price risk is perfectly hedged, the hedging effect is much better than for the other
hedging strategies (Figure 8). These results demonstrate that adding the reverse
mortgage to the product portfolio effectively reduces the total risk associated with the
surplus because the increase in the value of the house price can help to offset the
longevity risk of the annuity. Thus, the numerical results further demonstrate that
adding a reverse mortgage to the product portfolio (Hedging Strategy 5) creates a
much better hedging effect and effectively reduces the total risk of the surplus in both
cases.

To sum up, the numerical results suggest that the proposed generalised immuni-
sation approach can effectively calculate the required product mix portfolio to
eliminate most of the interest rate and mortality risks simultaneously. We also show
that a reverse mortgage can serve as an effective hedging vehicle for hedging longevity
risk. It is important to note that the insurers need to separate the aggregate longevity
risk from the idiosyncratic longevity risk when considering a hedging strategy. As the
numbers of policy-holders increase, the idiosyncratic longevity risk should be
effectively diversified. The hedging effectiveness will also improve as the number of
policy-holders increases.

Conclusions

To hedge the interest rate risk in the insurer’s liability, asset-liability managers
commonly adopt a classical immunisation strategy. A similar hedging approach for

56 A perfectly hedged house price risk can be achieved by using a delta hedging strategy. This idea is similar

to the hedging concept in the Black–Scholes model for stock options. We also assume that there exists a

security whose return is the same as the return on the house price, that the short selling of this security is

permitted, there are no transaction costs and taxes, and that the security is perfectly divisible. However,

in the real world, only REIT-type securities are available for hedging, and their returns may be highly

correlated with the return on the house price, but not identical to the return on the house price.

Therefore, the net hedging effect lies in between the effects of no hedging and perfect hedging.
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longevity risk, which involves matching the mortality duration of life insurance and
annuities, has been proposed by Wang et al.57 The launch of new innovative longevity-
linked financial products, such as reverse mortgages, increases the complexity and
challenges faced by the insurers as they seek to implement their asset-liability mana-
gement strategy. With the house price dynamics and a large final payment received
at the end of the policy year, a reverse mortgage provides a different liability dura-
tion pattern from the annuity. In this paper, we propose a generalised immunisation
approach to obtain an optimal product portfolio so that life insurance companies can
hedge longevity and financial risks.

A key contribution of this paper is that it uses the PCA technique to determine the
most plausible shocks brought about by interest rates and mortality rates. We consider
this approach to be an important extension of the non-stochastic risk methodologies
that are based on durations and convexities. The proposed approach in this paper does
not rely on specific assumptions with regard to mortality models or interest rate
models. As long as the generated scenarios from the adopted models are highly
correlated, the proposed approach should be effective based on the results of the
principal components analysis. Thus, it can be a more effective tool used in calculating
the product mix or asset allocation strategies according to the needs of the insurance
companies in actual practice.

From our numerical examples, we demonstrate that our proposed approach can
effectively reduce the longevity risk and interest rate risk existing in a product
portfolio simultaneously. By using stochastic mortality and interest rate models and
the Monte Carlo simulation approach, we show that the proposed generalised
immunisation approach can serve as an effective vehicle in controlling the aggregate
risk of life insurance companies. The numerical results further demonstrate that
adding reverse mortgages to the product portfolio creates a better hedging effect and
effectively reduces the total risk associated with the surplus of the life insurers.
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