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Abstract. We examine index representation techniques for document-based inverted files, and present a mech-
anism for compressing them using word-aligned binary codes. The new approach allows extremely fast decoding
of inverted lists during query processing, while providing compression rates better than other high-throughput
representations. Results are given for several large text collections in support of these claims, both for compression
effectiveness and query efficiency.
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1. Introduction

The usefulness of an information retrieval system depends upon a range of factors, includ-
ing the amount of processor and disk resources required to store documents and generate
answers to queries; the quality of the returned answers; and the interface presented by the
system to its user. The first of these three factors is essentially economic, and directly con-
tributes to the cost of providing search services. The second and third factors determine the
extent to which users “like” the service, and thus the amount that they are willing to pay
for it. There may also be tradeoffs possible between the three factors. For example, a crude
search method may be very fast, but yield low-quality answers. Improvements in any of
these three areas, or in the tradeoffs between them, are of direct relevance to any provider
of information retrieval services.

In this work we focus on the first of the three factors. Resource costs arise in a number
of ways – the cost of storing the raw data once is has been harvested from the web or
some other source; the computational cost of building the data into an information retrieval
system; the storage cost associated with index and vocabulary structures once they have been
constructed; and the computational cost of using the structures to determine the proposed
answers to queries.

There has been considerable investigation over many years into efficient mechanisms
for indexing text, for storing the resultant indexes, and for using them to resolve user-
initiated queries (Salton 1989, Frakes and Baeza-Yates 1992, Witten et al. 1999, Baeza-
Yates and Ribeiro-Neto 1999). Common to all efficient implementations is a mechanism
for representing the index in a compact manner, usually by reducing each index list to a
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sorted sequence of document identifiers; then taking the difference between consecutive
values to form a list of d-gaps; and ultimately treating the representation of the d-gaps as
an integer coding problem. Index compression also provides faster query processing than
might be otherwise possible, as smaller amounts of data need to be transferred from disk
(Zobel and Moffat 1995, Williams and Zobel 1999). In particular, the relativity between
disk and CPU speeds on current hardware is such that with most compression schemes,
data can be decoded faster than it can be delivered from the disk, resulting in a net decrease
in access time if it is stored compressed. Trotman (2003) provides a detailed exploration of
this behavior.

In this paper we describe a new compression technique for inverted file indexes. The new
mechanism provides compression rates that are inferior to the best that have been previously
achieved, but has the advantage of requiring exceptionally low computational effort at
decoding time. That is, by allowing some inefficiency in the compressed representation, the
new code provides fast access into the compressed inverted lists, and overall provides faster
query processing than previous techniques. We give compression results for several large
text collections in support of these claims. We also give retrieval throughput results that show
the overall benefit of the new approach compared to previous index coding mechanisms.

2. Index representations

In an inverted index, the integer document identifiers associated with each distinct index term
are collected together into an inverted list. In a typical large collection there are hundreds of
thousands of such lists, ranging in length from one document identifier through to millions
of document identifiers. A vocabulary notes which terms appear in the collection, and the
locations on disk of their inverted lists.

Query resolution consists of searching the vocabulary for the query terms; fetching and
decoding some (or all) of some (or all) of the corresponding inverted lists; and computing
a similarity score for each document mentioned in the parts of the inverted lists that get
processed. The documents with the highest similarity scores are then presented as the
“answers” to the query. Witten et al. (1999) provide a description of the structures and
mechanisms involved when queries are processed using an inverted file index. Alternative
approaches are described by Persin et al. (1996) and Anh et al. (2001).

Each of the inverted lists consists of a set of integer document numbers. The standard
way of representing these is to sort them into document-order, and then take differences
between consecutive values. For example, the document-sorted list

〈4, 10, 11, 12, 15, 20, 21, 28, 29, 42, 62, 63, 75, 95〉

is reduced to the set of d-gaps

〈4, 6, 1, 1, 3, 5, 1, 7, 1, 13, 20, 1, 12, 20〉.

For terms t that occur in many of the documents in the collection, the list of d-gaps is long,
but on average the values must be small, since the sum of the d-gaps cannot exceed N, the
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number of documents in the collection. On the other hand, terms with short inverted lists
can contain large d-gaps, but cannot contain very many of them. That is, while large d-gaps
can occur, they cannot be common. If the inverted list for a term t contains ft entries, then
the average d-gap in that list cannot exceed N/ft.

A wide range of representations have been described for efficiently representing d-gaps.
Witten et al. (1999) explain these and provide pointers into the original literature. Here
we summarize the properties of a few key techniques, to set a context for the mechanism
described in the next section.

If the documents containing a given term t can be assumed to be a random subset of the
documents in the collection, then the set of d-gaps associated with term t will conform to
a geometric distribution, and a Golomb code (see Witten et al. (1999) for a description)
provides a minimum-redundancy representation. In essence, the Golomb code is optimal
among the universe of prefix codes if the documents containing the term are randomly
scattered. Golomb codes are also relatively straightforward to implement, and have been
found to provide good compression effectiveness on typical document collections, over the
full spectrum of scale.

If the documents containing a term t are not a random subset, but are instead clustered in
some way as t moves into and out of use in the collection (for example, consider the word
“Chernobyl” in a collection organized chronologically or geographically), better compres-
sion can be obtained. The binary interpolative code of Moffat and Stuiver (2000) is sensitive
to localized clustering, and in extreme cases can reduce a whole run of unit d-gaps to just
a few bits of output, still making use of simple binary coding mechanisms. Blandford and
Blelloch (2002) took these ideas to the next level, and considered the possibility of reorder-
ing the documents in the collection so as to magnify clustering effects and thus minimize the
cost of storing the index, but we do not apply their technique here, and leave the collection
in its original ordering.

A wide range of ad-hoc mechanisms have also been described. The static codes of Elias
(again, see Witten et al. (1999) for details) fall into this category—they give plausibly good
compression, and have the advantage of not requiring any tuning or parameter setting. In
a sense, they trade away compression effectiveness in any particular situation in favor of
universality. However, Elias codes decode at the same rate as Golomb codes, and are no
easier to implement.

Other tradeoffs are possible. In particular, it is interesting to consider compromises that
swap compression effectiveness for decoding speed, on the grounds that a modest amount
of additional disk storage to hold the index may well be warranted if query processing using
the index can be accelerated. The best examples of these tradeoffs come through the use of
nibble- and byte-aligned codes, which avoid the bit-by-bit processing costs associated with
the Golomb, Elias, and interpolative techniques.

The commonest byte-aligned coding regime uses one bit in each byte as a flag, and the
other seven bits for data. During encoding, if the number to be coded fits into a seven-bit
integer, then those bits are output in a byte with a leading “0”. Otherwise, the seven low-
order bits are written in a byte with a leading “1”; the other high-order bits of the number are
shifted right by seven bits; one is subtracted from them; and the process repeated. During
decoding, if the flag bit in any byte is “1”, the next byte must be fetched, incremented, and
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prepended, and then its flag bit checked. When a byte with a “0” flag is reached, the number
is complete.

The net effect is that the numbers 1 to 128 = 27 are stored in a single byte; the numbers
129 to 16,512 = 214 + 27 in two bytes; and so on—a kind of byte-level Golomb code.
This code has been used in a number of commercial and research retrieval systems over the
years, because of its low-tech blend of variable-length coding and byte-wise operation, and
is considered in detail in the experiments of Scholer et al. (2002) and Trotman (2003).

Many other ad-hoc codes can also be constructed. For example, in a nibble-aligned code,
the first three bits of the first four-bit nibble of each code might be used to record a number
(between zero and seven) of additional nibbles to be fetched and concatenated to make a
codeword. In this code, d-gaps of 1 and 2 would be coded into a single nibble; d-gaps of 3
to 34 = 25 + 21 into two nibbles, or one byte; d-gaps of 35 to 546 = 29 + 25 + 21 into three
nibbles, and so on. On most computer architectures accessing byte- and half-byte-aligned
nibbles is significantly faster than building codewords composed of individual bits, meaning
that substantial query-time performance gains can be achieved. Scholer et al. (2002) and
Trotman (2003) provide experimental evidence of the efficacy of byte-aligned codes in a
query processing system. Byte-aligned codes have also attracted attention for word-based
text compression (de Moura et al. 2000), where the alignment is beneficial to compressed
searching.

The problem with ad-hoc codes is that they are insensitive to any attributes of the distri-
bution of d-gaps being handled, and represent a Henry Ford-like “any color you like, so long
as it is black” approach to compression. In a typical inverted index there is considerable
variation in the d-gap distributions that must be handled: between one inverted list and the
next; between one block of an inverted list and the next; and even between different parts
of the same block of the same inverted list.

3. Fast decompression

This section introduces an alternative paradigm for representing a list of d-gaps, and three
ways in which that paradigm might get implemented. The three implementations—dubbed
“Simple-9”, “Relative-10”, and “Carryover-12”—offer different compromises between de-
coding complexity and compression rate. All combine reasonably good compression with
fast decoding.

Simple-9

The basic idea of the new approach is that it represents a hybrid between bit-aligned and
byte-aligned codes. It allows codewords that can be as short as one bit, but enforces a regular
pattern within each compressed word, together with a periodic alignment that greatly reduces
the cost in the decoder of extracting individual codewords from the incoming bitstream.
It is also automatically sensitive to the local distribution of d-gaps, in the way that the
interpolative code is sensitive.

Normally in designing a code the objective is to assign the minimum possible number of
output bits to each input symbol. Here we adopt a slightly different tack, and assign to each
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fixed output word the maximum possible number of input symbols. In the new code, each
32-bit word stores a number of binary integers. (A similar code can readily be applied to
64-bit double words should such hardware become commonplace.) Different words store
different numbers of integers, but within each word each integer is represented using exactly
the same number of bits. In the first variant a total of 28 such data bits are used in each 32-bit
word. (The use of the remaining 4 bits in each word is explained shortly.) For example, if
the next 28 d-gaps in an inverted list are all either 1 or 2, then 28 one-bit binary codes can
be used to code them. On the other end of the spectrum, if the next d-gap is greater than
16,384 = 214 then it must be coded into a single word as a 28-bit number. Between these
two extremes, seven 4-bit codes, or five 5-bits codes, or four 7-bit codes, and so on, could
be used, depending on the values of the upcoming d-gaps. Numbers greater than 228 cannot
be represented in this system, meaning that the number of documents in the collection is
limited to approximately 256 million. We do not regard this as a serious limitation, since
very large collections are typically partitioned into manageable subcollections.

Table 1 shows the nine possible ways in which the 28 data bits can be partitioned into
equal length binary integers, together with the number of bits (of the 28) that are wasted
in each arrangement because the codewords are of fixed length. The remaining four bits
in each 32-bit word are reserved for a selector field that indicates which row of the table
is being used in this word—a value in the range a through to i. That is, each 32-bit output
word consists of a 4-bit selector code, describing how the rest of the word is partitioned, and
then a sequence of flat binary codewords describing a variable number of d-gaps, totalling
not more than 28 bits. As many binary codes as can fit are packed into each 32-bit output
word, meaning that at most 3 bits per word are wasted and not allocated to any part of the
code.

To see this process in action, consider the list of d-gaps that was used earlier as an
example:

〈4, 6, 1, 1, 3, 5, 1, 7, 1, 13, 20, 1, 12, 20〉.

Table 1. Nine different ways of using 28 bits for flat binary codes (method Simple-9).

Number of Length of each Number of
Selector codes code (bits) unused bits

a 28 1 0

b 14 2 0

c 9 3 1

d 7 4 0

e 5 5 3

f 4 7 0

g 3 9 1

h 2 14 0

i 1 28 0
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If it is applicable, row a yields the most compact representation. But because there is a value
greater than 2 = 21 in the first 28 d-gaps to be coded, row a cannot be employed. Similarly,
there is a value greater than 4 = 22 in the first 14 entries, making use of row b impossible.
But none of the first 9 entries are greater than 8 = 23, so row c can be used to drive the first
word of output. Allowing for the fact that a d-gap of one maps to a code of 000, the first
output word is thus:

c, 011, 101, 000, 000, 010, 100, 000, 110, 000, . ,

in which c is coded into four bits (as 0010 or some such), and the commas are purely for
visual separation, and do not appear in the output. The final “·” represents the 32nd bit of
the word, which is unused in the row c partitioning.

The remainder of the list of d-gaps (starting at 13, with five further values to be coded)
is processed the same way, and yields a second word of compressed output:

e, 01100, 10011, 00000, 01011, 10011, . . . ,

where now three bits are unused in the 32-bit word. That is the end of the list of d-gaps, so
the compressed inverted list is complete.

In total, two 32-bit words suffice to code this list of fourteen d-gaps. Had a Golomb
code been used, a total of 58 output bits would have been generated, which would similarly
consume 64 bits if byte-padding or word-padding takes place on each compressed inverted
list.

To explore the effectiveness of this approach, inverted lists of varying density were
generated randomly for a collection containing a nominal N = 10,000,000 documents.
Figure 1 shows the outcome of that experiment. Each vertical column of data points in

Figure 1. Bits per pointer for various integer coding methods, as a function of the number of pointers randomly
generated for hypothetical inverted lists for a collection containing N = 10,000,000 documents. Compression is
measured in average bits per pointer.
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the graph corresponds to a value of ft between 4 and 4,000,000. To calculate each data
point, a random set of ft distinct values was chosen, each between 1 and 10,000,000; sorted
into order; and then d-gaps extracted. The exact number of bits required by each of several
different coding methods to represent the list of d-gaps was then divided by ft to get an
average cost per d-gap, in bits per pointer. No allowance was made for byte rounding, or,
in the case of the Golomb code, for the cost of storing the controlling parameter b.

The best code on the resulting geometric distributions is the Golomb code—it is ideal
for the d-gaps that arise from randomly selected subsets, and sets a baseline that none of
the other mechanisms are able to equal. The interpolative code (not shown on the graph)
parallels the Golomb code, and is only fractionally worse than it. The bit-aligned and nibble-
aligned codes described in the previous section are also reasonably effective when the size
of each d-gap is large, but become limited by their alignment constraints for small d-gaps,
and cannot represent pointers in fewer than 8 bit and 4 bits respectively, no matter how
dense the list.

The solid line marked “Simple-9” in figure 1 shows the behavior of the code described
in Table 1. (The suffix on the name arises because there are nine alternative partitionings
of the word. Other variants are discussed shortly.) The new representation is considerably
worse than the other methods for short inverted lists. The bad performance is a consequence
of the quantum jump from 14 bit codes for d-gaps of less than 16,385 up to 28 bit codes for
larger d-gaps, and the absence of any compromise in between. In effect, any number bigger
than 214 = 16,384 is coded using a full 32-bit word. Furthermore, occasional values less
than this limit are also coded into 32-bit words—two consecutive sub-16,384 d-gaps are
required before a word containing two 14-bit codes can be emitted, and in a sparse inverted
list the chances of this are slim.

On the other hand, the Simple-9 method works very well on long inverted lists. In these
lists the majority of the d-gaps are uniformly small, and the ability to generate words
containing 1, 2, 3, 4, 5, or 7 bit codes results in a pleasingly compact representation—better
than either the byte-aligned or the nibble-aligned codes against which it is being compared.

Relative-10

The use of four bits for the selector code means that seven of the sixteen possible selector
combinations are unused, a loss of almost one bit per word. One way of recovering this
loss would be to eliminate a row of the table (perhaps row e, since use of it wastes the most
bits), and choose amongst eight possibilities for each word, and use only three bits for the
selection code. Doing so would allow 29 data bits in each word. Unfortunately, 29 is prime,
and so the extra bit can only be used when rows a and i are in operation.

Another option would be to introduce a variable lengh selector component, so that (for
example) two 15-bit codewords could be signalled by a 2-bit selector, and nine 3-bit code-
words indicated by a selector that could be as long as 5 bits without affecting the overall
utilization within the word. The drawback of this approach is that it reintroduces the bit
operations we are striving to eliminate.

A more interesting approach is to shrink the selector to just 2 bits, leaving 30 data bits. The
benefit of this is obvious—30 has many factors, and provides a wider range of partitionings
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Table 2. Different ways of using 30 bits for binary codes. Only four of the ten rows in the table are available at any
given time, with the subset determined by the value of the selector in the previous word. The various combinations
are denoted row a to row j, and the legal transfers between rows are shown in Table 3 (method Relative-10).

Number of Length of Number of
Selector codes each code (bits) unused bits

a 30 1 0

b 15 2 0

c 10 3 0

d 7 4 2

e 6 5 0

f 5 6 0

g 4 7 2

h 3 10 0

i 2 15 0

j 1 30 0

than does the previous 28-bit option. Table 2 lists the ten partitionings available for 30 data
bits, and shows that there are only two partitionings that result in unused bits.

The problem now is the selector. With only two bits available, we are restricted to just
four choices for each word. To make the most use of those four combinations, they are
interpreted relative to the selector value of the previous word, using four options: one row
less; the same row; one row more; or the last row. That is, if the previous word made use of
row r , then the two-bit selector in this word identifies one of row r − 1, r , r + 1, and row
j. At the extremities of the table (when r = a and r = j, for example) the choices of next
row are altered so as to always provide four viable alternatives. Table 3 shows the transfer
matrix that dictates which rows of Table 2 are permitted to follow each other.

Encoder and decoder must agree on an initial value of “current selector” in order to
process the first word. In all of the experiments described here, row j was assumed as an
initial configuration.

A final improvement is to note that Table 3 is pessimistic, in that it allows for a d-gap as
large as 228 at all times. To provide the maximum number of options in each word, when
it is known that the maximum d-gap in the inverted list fits into a binary code of 14 bits or
less, the transfer table is adjusted to move the column of “3”s to the left, pushing over other
codes as appropriate.

If the set of d-gaps is homogeneous, the bulk of the rows will get coded using an appro-
priate row of Table 2. The occasional large d-gap may result in a sudden shift to row j (or
the alternative maximum row in use if it is less than j) and the consequent use of some long
codewords, but the current state can then migrate back up the table to the natural position
for this list.

Figure 1 shows the compression effectiveness of this “Relative-10” mechanism, evaluated
against the methods that were described earlier. Because it permits 15-bit codewords, there is
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Table 3. The transfer table, showing which rows of Table 2 are available in the context of the current row. At
any given time four rows are available. The last row of the table must always be available, unless a preliminary
scan shows that the largest d-gap in the list can be represented in fewer than 28 bits.

Possible next selector values

Current selector a b c d e f g h i j

a 0 1 2 3

b 0 1 2 3

c 0 1 2 3

d 0 1 2 3

e 0 1 2 3

f 0 1 2 3

g 0 1 2 3

h 0 1 2 3

i 0 1 2 3

j 0 1 2 3

a marked improvement compared to Simple-9 in the section of the graph in which average
d-gaps are in the range 10,000 to 100,000. Relative-10 also provides a more effective
representation on very long inverted lists, since when the average d-gap is small, two extra
bits of each word are being used for data.

Carryover-12

In Table 2, when 7-bit and when 4-bit codewords are being used, there are two spare bits in
each word. In the third variant of the word-aligned approach, “Carryover-12”, those spare
bits are used to store the selector value for the next word of codes, thereby allowing that
subsequent word to employ 32 rather than 30 data bits.

There are also other situations in which “spare” bits can be created in a word. For example,
when there are 30-data bits, and the next two numbers are both less than 214 = 16,384, then
the allocation of the 30 bits as two 15-bit numbers is wasteful. Adding a “two codewords
each of 14 bits” row to the table allows the pair of data values to be stored, while at the
same time permitting inclusion of the next selector.

Similarly, when 32 data bits are being used, allocation of five 6-bit codes leaves two bits
unused, and allocation of two 15-bit codewords (rather than two 16-bit codewords, which
is retained as an additional option) similarly permits storage of the next selector.

That is, in this Carryover-12 variant, each word contains either 32 data bits, if the selector
for this word can be fitted into the previous word; or contains a selector plus 30 data bits, if
it cannot. In either case, if there are spare bits at the end of the current word, they are used
to hold the selector for the next word in the sequence. Table 4 summarizes the situation, and
shows the twelve options that are now possible, for each of 30 data bits and 32 data bits.
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Table 4. Different ways of using 30 or 32 bits for binary codes. If the previous word had space for a 2-bit selector
in bits that would otherwise be unused, all 32 bits in the current word are available for data. If the necessary selector
is not available in the previous word, the first 2 bits in this word are used for the selector, and the remaining 30 bits
are available for data. In either case, if two bits in this word remain available after the codewords are allocated,
they are used to store the selector for the next word. The various combinations are denoted row a to row l (method
Carryover-12).

Previously selector available No previous selector

Length of each Number of Bits for next Length of each Number of Bits for next
Selector code (bits) codes selector? code (bits) codes selector?

a 1 32 1 30

b 2 16 2 15

c 3 10 Yes 3 10

d 4 8 4 7 Yes

e 5 6 Yes 5 6

f 6 5 Yes 6 5

g 7 4 Yes 7 4 Yes

h 8 4 9 3 Yes

i 10 3 Yes 10 3

j 15 2 Yes 14 2 Yes

k 16 2 15 2

l 28 1 Yes 28 1 Yes

Figure 1 also plots the compression performance of the Carryover-12 scheme on randomly
generated inverted lists of different densities. Further gains in effectiveness are obtained
on relatively sparse lists compared to the other two word-aligned variants, as now 16-bit
codewords are possible. The Carryover-12 code also obtains better compression on dense
inverted lists.

The possible drawback of the Carryover-12 mechanism is its increased complexity.
Figure 2 gives pseudo-code that describes the decoding process for a single value, and
it is clear that several more operations per word are required compared to either of the
other two variants. To establish the extent of this additional cost, we undertook detailed
experiments with four large document collections.

Other approaches

There are, of course, other possibilities. One attractive option is to add further rows to
Table 4, and allow more than one selector to be inserted into the vacant bits of a word. For
example, a row might be included in the left half of the table that codes a single 20-bit
number, then allows six relative selectors to be inserted. The corresponding rule in the right
half of the table would provide for five more selectors. In this variant the decoder maintains a
queue of pending selectors it has retrieved from the trailing end of previous words, and only
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Figure 2. Decoding one integer d-gap using the Carryover-12 mechanism. When table is “left”, the second
column of Table 4 is accessed as array table; and when table is “right”, the fifth column of Table 4 is used. Array
transfer table in this pseudo-code is an inverse of the mapping table shown in Table 3, and is indexed by a current
row number and an integer between 0 and 3, to yield a next row number.

extracts a new selector from the leading bits of any word if the queue has become empty.
The number of rows in the controlling table increases, and the transfer table requires more
care, since it may no longer be appropriate to move between adjacent rows. Preliminary
experiments with this approach indicated that compression effectiveness was very slightly
improved compared to Carryover-12, but at the cost of a more complex decoder. We have
not included this mechanism in the results reported in the next two sections.

4. Compression performance

To establish the speed of the new mechanisms, and allow them to be compared against
existing techniques in a practical setting, we embedded them into a test-bed information
retrieval system. This section describes experiments to measure the effectiveness of the
Simple-9, Relative-10, and Carryover-12 codes that were described in the previous section,
and compares them in this task to a range of benchmarks. The next section extends the
experimentation, and gives throughput rates for an actual retrieval system.

The discussion in Section 2 suggested that each inverted list is stored as a single list of
d-gaps, to make a document sorted index. One issue not yet addressed is the need to also
store the within-document frequency values fd,t that are a component of most similarity
scoring mechanisms (Witten et al. 1999). Storing the frequency of each term in a document
along with the pointer would require interleaving the words of two distinct streams, each
with its own set of selectors and codewords—one for the document numbers, and one for
the within-document frequencies.

Recent information retrieval architectures have used variant index organizations that
are more amenable to word-aligned codes. In particular, our test system makes use of an
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impact-sorted index (Anh et al. 2001). In an impact-sorted index (and similarly in the
frequency-sorted indexes of Persin et al. (1996)) the fd,t values (or their logical equivalent)
are factored out, and each inverted list consists of a sequence of blocks. Within a block all
pointers have the same impact value, which is stored only once per block, if at all; and so
the set of pointers in a block can be considered to be simple sorted list of document numbers
of the kind assumed in Sections 2 and 3.

The blocks in each inverted list are sorted in decreasing order of impact, and are not
necessarily all examined while any particular query is being resolved. That is, in this or-
ganization query evaluation pruning is effected by only processing a subset of the blocks
in each of the index lists. Collection of the “important” pointers into the first few blocks
of each inverted list, and factoring out of the impact value itself, makes the impact-sorted
structure an ideal match for the word-aligned codes, as there is no need to support any
random access capabilities within each inverted list.

Each block of the inverted list for each term can be presumed to consist of three header
fields, followed by a list of d-gaps:

〈
nb, s, r,

[
d1, d2, d3, . . . , dnb

]〉

where nb is the number of d-gaps in this block, s is the integer-valued impact associated
with the block, r is the maximum row index in the corresponding table of combinations that
is required for this block, and di is the i th d-gap. In typical applications, s is a small integer
between 1 and 10.

Table 5 describes the four test collections used in our investigation. All are drawn from the
document sets distributed as part of the long-running TREC information retrieval project.
The WSJ collection is the concatenation of the Wall Street Journal subcollections on disks
one and two of the TREC corpus (Harman 1995). The collection labelled TREC12 is the
concatenation of all nine subcollections on the first two TREC disks, including the WSJ data.
The collection wt10g is 10 GB of web data collected as part of the Very Large Collection
TREC track in 2000 (Bailey et al. 2003, Soboroff 2002); and the collection .GOV is the

Table 5. Test collections used, showing their size in megabytes; the number of documents they contain; the
number of distinct terms after case-folding and stemming; the number of document pointers in the inverted index;
and the number of blocks in the impact-sorted inverted index. All of the collections are derived from data collected
as part of the TREC information retrieval project (see trec.nist.gov).

Collection

Attribute WSJ TREC12 wt10g .GOV

Size (MB) 508.5 2071.7 10511.1 18537.6

Documents (103) 173.4 741.9 383.4 1247.8

Terms (103) 295.6 1133.9 2320.0 5486.9

Pointers (106) 38.6 137.1 92.8 360.1

Blocks (103) 543.6 1909.6 3304.2 7832.9
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Table 6. Compression effectiveness, measured in bits per pointer averaged across the whole index, for an impact-
sorted index with 10 different impact values. Costs include block headers and word-padding costs on each inverted
list, but not components usually associated with the vocabulary structure, such as ft . The code “Simple-9” uses a
4-bit selector in each word, and 28 data bits, as shown in Table 1. The row “Relative-10” uses a 2-bit selector that
is relative to the previous word, and 30 data bits, as shown in Table 2. The code “Carryover-12” stores relative
selectors in the spare bits of the previous word, if possible, and uses either 30 or 32 data bits, as shown in Table 4.

Collection

Method WSJ TREC12 wt10g .GOV

Golomb 6.62 7.54 8.59 8.43

Interpolative 6.64 6.88 7.86 8.49

Byte-aligned 10.07 10.23 10.79 11.38

Nibble-aligned 9.50 9.58 10.37 11.13

Simple-9 8.66 9.05 10.35 11.13

Relative-10 8.19 8.60 10.02 10.35

Carryover-12 7.86 8.35 9.73 10.04

18 GB collection that was built by crawling the .gov domain in 2002 (Craswell and Hawking
2002).

In our experimental environment, a retrieval system is built for each collection as a
monolithic whole. The total cost of the index is thus the combined cost of storing all of
the equal-impact blocks for all of the inverted lists, where the document numbers stored in
each block are a sorted subset of the integers from 1 to N, the number of documents in that
collection (Table 5), and where each inverted list contains as many as 10 blocks.

Table 6 lists the total cost of storing compressed inverted indexes of this kind for different
compression methods, expressed in terms of bits per pointer stored. Values listed are inclu-
sive of all of the data stored in each inverted list, plus any byte and word alignment costs at
the end of blocks and whole inverted lists. They do not include the cost of the vocabulary
file, which is both constant for all of the compression methods, and relatively small. In the
case of the Golomb code, the parameter b is calculated as b = 0.69 × (N/nb), where N is
the number of documents in the collection, and nb is the number of document numbers in
this block (Witten et al. 1999). That is, no additional overhead is incurred by the Golomb
code.

For example, on collection .GOV the Golomb code stores the index in 8.43 bits per
pointer on average, and as it (Table 5) contains 360.1 ×106 pointers, the total index costs
approximately 8.43 × 360.1 × 106/8/1024/1024 = 361.9 MB, or about 1.9% of the
collection being indexed.

As can be seen from the table, the word-aligned codes described in this paper are inferior
in an effectiveness sense to the bit-aligned Golomb and interpolative codes. The latter
coding method works particularly well when the collection is non-homogeneous (TREC12
and wt10g). On the other hand, the word-aligned codes are never worse than either the byte-
aligned code or the nibble-aligned codes, and represent a considerable saving in storage
space compared to them.
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Figure 3. Decoding speed measured in CPU nanoseconds per pointer, as a function of the number of pointers
randomly generated for hypothetical inverted lists for a collection containing N = 10,000,000 documents. These
experiments were conducted on a 933 MHz Intel Pentium III with 1 GB RAM running Debian GNU/Linux.

5. Decoding speed

The more interesting question is whether or not the word-aligned methods suffer any penalty
in decoding speed compared to the byte-aligned code. Figure 3 plots decoding cost, in CPU
nano-seconds per pointer decoded, as measured in an experiment identical to that shown
in figure 1. That is, synthetic index lists were generated containing a random subset of an
assumed N = 10,000,000 documents; compressed using the various representations being
considered; and then decoded under controlled conditions. The time taken on a 933 MHz
Intel Pentium III with 1 GB RAM running Debian GNU/Linux to decode the entire index
list (working from an array of binary words in memory, and generating an output array of
integer d-gaps, also in memory) was divided by the number of pointers in the list to get a
per-pointer decompression rate.

As can be seen, the Golomb code is expensive compared to the other mechanisms, and
is not competitive. (The interpolative code, which is not plotted, was a further 10% slower
than the Golomb code.) Nibble-aligned coding is moderately fast, but outperformed by
the byte-aligned and word-aligned codes. The slight extra complexity of the Carryover-12
mechanism (figure 2) means that it is fractionally slower than the Simple-9 and Relative-10
variants, but all three operate at high speed, and are direct competitors with the byte-aligned
code.

In the final analysis, raw decoding speed is less important in an information retrieval
environment than is query throughput rate. Table 7 shows average query resolution times in
milliseconds per query averaged over 10,000 random queries containing on average three
terms each. For example, three of the queries used on the wt10g collection were “digital
board”, “fever forehand”, and “exceptional captured operate circuits contamination”.

The times shown in Table 7 are the average elapsed time between the moment the query
enters the system, and the time at which a ranked list of 1,000 answer documents has been



INVERTED INDEX COMPRESSION 165

Table 7. Impact of different coding schemes on query processing speed. Each value is the average of the elapsed
time (in milliseconds) between when a query enters the system and when a ranked list of the top 1,000 answers
is finalized, but not retrieved. The average is taken over 10,000 artificial queries with mean length of three. The
hardware used was a 933 MHz Intel Pentium III with 1 GB RAM running Debian GNU/Linux.

Collection

Method WSJ TREC wt10g .GOV

Golomb 12.7 43.5 91.0 80.5

Interpolative 14.9 48.2 101.8 91.2

Byte-aligned 9.5 30.7 58.7 53.2

Nibble-aligned 8.6 31.9 76.1 68.0

Simple-9 7.7 28.6 56.6 47.2

Relative-10 5.8 23.3 55.0 47.9

Carryover-12 5.3 23.3 57.5 50.5

prepared, but without any of those answers being retrieved or presented to the user. In all
cases, an impact sorted index with 10 different impact levels was used, together with the fast
query evaluation process described by Anh et al. (2001), but without any use of pruning or
early termination heuristics. The same hardware—a 933 MHz Intel Pentium III with 1 GB
RAM running Debian GNU/Linux—was used in these experiments.

Our word-aligned integer compression mechanisms allow query throughput rates that
approach twice those of the bit-aligned Golomb code, and are better than the throughput
rates achieved by the byte-aligned code.

6. Conclusion

The word-aligned schemes proposed in this paper provide a new trade-off point between
compression efficiency and compression effectiveness when coding the inverted indexes
used in large information retrieval systems. They handsomely outperform Golomb codes
for decoding speed and query processing throughput, while at the same time permit markedly
improved compression effectiveness compared to the well-known byte-aligned compression
mechanism.

Common to all three variants is the use of each output word to store a number of flat
binary codes in a uniform manner. This scheme can thus only be used when the probability
distribution is smooth—the sequence of d-gaps 〈1, �, 1, �, 1, �, . . .〉, where � is a large
number, has a very high degree of structure for a more principled compression mechanism to
exploit, but is expensive for the word-aligned coder. However such pathological distributions
are most unlikely in the application used as an example in our work, and for the four
document collections used in our experiments the word-aligned code has clear benefits.

Other approaches are also possible. In particular, we have been experimenting recently
with a variant of the Carryover-12 mechanism in which binary codes can span word bound-
aries. Preliminary results indicate that compression effectiveness can be improved, without
degrading query response times (Anh and Moffat 2004).
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Software. An implementation of the Carryover-12 mechanism is available from http://
www.cs.mu.oz.au/~alistair/carry/.
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