Skip to main content
Log in

Nicolas Rashevsky's Mathematical Biophysics

  • Published:
Journal of the History of Biology Aims and scope Submit manuscript

Abstract

This paper explores the work of Nicolas Rashevsky, a Russian émigré theoretical physicist who developed a program in “mathematical biophysics” at the University of Chicago during the 1930s. Stressing the complexity of many biological phenomena, Rashevsky argued that the methods of theoretical physics – namely mathematics – were needed to “simplify” complex biological processes such as cell division and nerve conduction. A maverick of sorts, Rashevsky was a conspicuous figure in the biological community during the 1930s and early 1940s: he participated in several Cold Spring Harbor symposia and received several years of funding from the Rockefeller Foundation. However, in contrast to many other physicists who moved into biology, Rashevsky's work was almost entirely theoretical, and he eventually faced resistance to his mathematical methods. Through an examination of the conceptual, institutional, and scientific context of Rashevsky's work, this paper seeks to understand some of the reasons behind this resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abir-Am, Pnina G. 1985. “Recasting the Disciplinary Order in Science: A Deconstruction of Rhetoric on 'Biology and Physics' at Two International Congresses in 1931.”Humanity and Society 9: 388–427.

    Google Scholar 

  • Abir-AmPninaG. 1987. “The Biotheoretical Gathering, Trans-disciplinary Authority and the Incipient Legitimation of Molecular Biology in the 1930s: New Perspective on the Historical Sociology of Science.” History of ScienceXXV: 1–70

  • Abraham, Tara H. 2002. “(Physio)logical Circuits: The Intellectual Origins of the McCulloch-Pitts Neural Networks.” Journal of the History of the Behavioral Sciences38(1): 3–25.

    Article  Google Scholar 

  • Allen, Garland 1975. Life Science in the Twentieth Century. New York: Wiley.

    Google Scholar 

  • Bartholomay, Anthony F., Karreman, George and Landahl, Herbert D. 1972. “Nicolas Rashevsky.” Bulletin of Mathematical Biophysics34 (no pagination).

  • Benson, Keith R., Maienschein, Jane and Rainger, Ronald (eds.). 1991. The Expansion of American Biology. New Brunswick and London: Rutgers University Press.

    Google Scholar 

  • Beyler, Richard H. 1996. “Targeting the Organism: The Scientific and Cultural Context of Pascual Jordan's Quantum Biology, 1932-1947.” Isis87(2): 248–273.

    Article  Google Scholar 

  • Blair, Henry A. 1932a. “On the Intensity-time Relations for Stimulation by Electric Currents I.” Journal of General Physiology 15: 709–729.

    Article  Google Scholar 

  • Blair, Henry A. 1932b. “On the Intensity-time Relations for Stimulation by Electric Currents. II.” Journal of General Physiology15: 731–755.

  • Blair, Henry A. 1934. “Conduction in Nerve Fibres.” Journal of General Physiology18: 125–142.

    Google Scholar 

  • Blustein, Bonnie E. 1992. “Percival Bailey and Neurology at the University of Chicago, 1928-1939.” Bulletin of the History of Medicine66: 90–113.

    Google Scholar 

  • Bohr, Niels 1937. “Kausalität und Komplementarität.” In R. Carnap and H. Reichenbach (eds.), Das Kausalproblem: Zweiter Internationaler Kongress für Einheit der Wissenschaft., Erkenntnis6(5/6): 293–303.

  • Borell, Merriley 1987. “Instruments and an Independent Physiology: The Harvard Physiological Laboratory, 1871-1906.” In Gerald L. Geison (ed), pp. 293–321.

  • Bronk, Detlev W. 1938. “The Relation of Physics to the Biological Sciences.” Journal of Applied Physics9(3): 139–142.

    Article  Google Scholar 

  • Carnap, Rudolf 1934. “On the Character of Philosophic Problems.” Philosophy of Science1: 5–19.

    Article  Google Scholar 

  • Carnap, Rudolf 1937. The Logical Syntax of Language. London: Kegan Paul.

    Google Scholar 

  • Carnap, Rudolf and Reichenbach, Hans (eds.). 1937. Das Kausalproblem: Zweiter Internationaler Kongress für Einheit der Wissenschaft. Erkenntnis6(5/6): 271–450.

    Google Scholar 

  • Cole, Kenneth S. and Curtis, Howard J. 1936. “Electrical Impedance of Nerve and Muscle.” Cold Spring Harbor Symposia on Quantitative Biology, Vol. IV. The Biological Laboratory: Cold Spring Harbor, NY, pp. 73–89.

    Google Scholar 

  • -1940. “Membrane Action Potentials from the Squid Giant Axon.” Journal of Cellular and Comparative Physiology15: 147–157.

  • Condon, Edward U. 1938. “Mathematical Models in Modern Physics.” Journal of the Franklin Institute225(3): 255–261.

    Article  Google Scholar 

  • Cordeschi, Roberto 2002. The Discovery of the Artificial: Behavior; Mind; and Machines Before and Beyond Cybernetics. Dordrecht: Kluwer.

    Google Scholar 

  • Cowan, Jack D. 1998. [Interview with James A. Anderson and Edward Rosenfeld], In James A. Anderson and Edward Rosenfeld(eds.), Talking Nets: An Oral History of Neural Networks. Cambridge, MA: MIT Press, pp. 97–124.

    Google Scholar 

  • Einstein, Albert 1956 [1934]. Ideas and Opinions. New York: Dell.

    Google Scholar 

  • Fisher, Ronald A. 1930. The Genetical Theory of Natural Selection. Oxford: Clarendon Press.

    Google Scholar 

  • Forbes, Alexander 1920. “Biophysics.” Science52: 331–332.

    Google Scholar 

  • Forbes, Alexander and Thatcher, Catherine 1920. “Amplification of Action Currents with the Electron Tube in Recording with the String Galvanometer.” American Journal of Physiology52: 409–407.

    Google Scholar 

  • Frank, Philipp 1937. “Philosophische Deutungen und Missdeutungen der Quantentheorie.” In R. Carnap and H. Reichenbach (eds.), Das Kausalproblem: Zweiter Internationaler Kongress für Einheit der Wissenschaft., Erkenntnis6(5/6): 303–317.

  • Frank, Robert G. Jr. 1994. “Instruments, Nerve Action, and the all-or-none Principle.” Osiris9: 208–235.

    Article  Google Scholar 

  • Gasca, Ana M. 1996. “Mathematical Theories versus Biological Facts: A Debate on Mathematical Population Dynamics in the 1930s.” Historical Studies in the Physical and Biological Sciences26 (Part 2): 347–403.

    Google Scholar 

  • Gasser, Herbert S. and Erlanger, Joseph 1922. “A Study of the Action Currents of Nerve with the Cathode Ray Oscillograph.” American Journal of Physiology62: 496–524.

    Google Scholar 

  • Geison, Gerald L. (ed). 1987. Physiology in the American Context: 1850-1940. Bethesda, MD: American Physiological Society.

    Google Scholar 

  • Gerard, Ralph W. 1952. “Ralph Stayner Lillie: 1875-1952.” Science16: 496–497.

    Google Scholar 

  • Grenell, Robert G. 1950. Review of Mathematical Biophysics: Physico-mathematical Foundations of Biology, 2nd ed. Science111: 265–266.

    Google Scholar 

  • Haldane, John B.S. 1924. “A Mathematical Theory of Natural and Artificial Selection, Part I.” Transactions of the Cambridge Philosophical Society23: 19–41.

    Google Scholar 

  • Harris, J.A. 1928. “Mathematics in Biology.” Scientific Monthly27(2): 141–152.

    Google Scholar 

  • Hastings, Alan and Palmer, Margaret A. 2003. “A Bright Future for Biologists and Mathematicians?” Science299: 2003–2004.

    Article  Google Scholar 

  • Hill, Archibald V. 1910. “A New Mathematical Treatment of Changes of Ionic Concentration in Muscle and Nerve under the Action of Electric Currents, with a Theory as to their Mode of Excitation.” Journal of Physiology40: 190–224.

    Google Scholar 

  • Hodgkin, Alan L. and Huxley, Andrew F. 1939. “Action Potentials recorded from Inside a Nerve Fibre.” Nature144: 710–711.

    Google Scholar 

  • Hoorweg, Jan L. 1892. “Ueber die elektrische Nervenerregung.” Pflüger's Archiv für Gesamte Physiologie52: 87–108.

    Article  Google Scholar 

  • Hull, David 1974. Philosophy of Biological Science. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Ingle, Dwight J. 1979. “Anton J. Carlson: A Biographical Sketch.” Perspectives in Biology and Medicine Winter (Part 2): S114–S136.

  • Israel, Giorgio 1993. “The Emergence of Biomathematics and the Case of Population Dynamics: A Revival of Mechanical Reductionism and Darwinism.” Science in Context6(2): 469–509.

    Article  Google Scholar 

  • Joergensen, Joergen 1937. “Ansprachen in der Eröffnungssitzung.” In R. Carnap and H. Reichenbach (eds.), Das Kausalproblem: Zweiter Internationaler Kongress für Einheit der Wissenschaft., Erkenntnis6(5/6): 278–285.

  • Jungnickel, Christa and McCormmach, Russell 1986. Intellectual Mastery of Nature: Theoretical Physics from Ohm to Einstein, Vol. II. Chicago and London: University of Chicago Press.

    Google Scholar 

  • Juni, Elliot 1949. Review of Mathematical Biophysics: Physico-mathematical Foundations of Biology, 2nd ed. Quarterly Review of Biology24(4): 377.

    Article  Google Scholar 

  • Katz, Bernard 1939. Electric Excitation of Nerve. London: Oxford University Press.

    Google Scholar 

  • Kay, Lily E. 1992. “Quanta of Life: Atomic Physics and the Reincarnation of Phage.” History and Philosophy of the Life Sciences14: 3–21.

    Google Scholar 

  • Kay, Lily E. 1993. The Molecular Vision of Life. New York, Oxford: Oxford University Press.

  • Kay, Lily E. 2000. Who Wrote the Book of Life? A History of the Genetic Code. Stanford, CA: Stanford University Press.

  • Keller, Evelyn F. 1990. “Physics and the Emergence of Molecular Biology: A History of Cognitive and Political Synergy.” Journal of the History of Biology23(3): 389–409.

    Article  Google Scholar 

  • Keller, Evelyn F. 2002. Making Sense of Life: Explaining Biological Development with Models, Metaphors, and Machines. Cambridge, MA: Harvard University Press.

  • Kevles, Daniel J. and Geison, Gerald L. 1995. “The Experimental Life Sciences in the Twentieth Century.” Osiris10: 97–121.

    Article  Google Scholar 

  • Kingsland, Sharon E. 1985. Modeling Nature: Episodes in the History of Population Ecology. Chicago and London: University of Chicago Press.

    Google Scholar 

  • Kingsland, Sharon E. 1986. “Mathematical Figments, Biological Facts: Population Ecology in the Thirties.” Journal of the History of Biology19(2): 235–256.

    Google Scholar 

  • Kohler, Robert E. 1991. Partners in Science: Foundations and Natural Scientists, 1900-1945. Chicago: University of Chicago Press.

    Google Scholar 

  • Landahl, Herbert D. 1965. “A Biographical Sketch of Nicolas Rashevsky.” Bulletin of Mathematical Biophysics27: 3–4.

    Google Scholar 

  • Lapicque, Louis 1926. L'Excitabilité en Fonction du Temps. Paris: Les Presses Universitaires de France.

    Google Scholar 

  • Lapicque, Louis and Lapicque, Mme 1903. “Expé riences sur la loi d'excitation é lectrique chez quelques inverté bré s.” Comptes Rendus de la Société de Biologie Paris55: 608–611.

    Google Scholar 

  • Lecomte du Noü y, Pierre 1926. Surface Equilibria of Biological and Organic Colloids. New York.

  • Lenoir, Timothy 1986. “Models and Instruments in the Development of Electrophysiology, 1845-1912.” Historical Studies in the Physical and Biological Sciences17: 1–54.

    Google Scholar 

  • Lewontin, Richard C. 2003. “Science and Simplicity,” Review of Making Sense of Life: Explaining Biological Development with Models, Metaphors, and Machines, by E.F.

  • Keller; Rosalind Franklin: The Dark Lady of DNA, by Brenda Maddox; Watson and DNA: Making a Scientific Revolution, by Victor K. McElheny; and DNA: The Secret of Life, by James D. Watson, The New York Review of Books, 1 May, L(7): 39–42.

  • Lillie, Ralph S. 1910. “The Physiology of Cell Division.-II. The Action of Isotonic Solutions of Neutral Salts on Unfertilized Eggs of Asterias and Arabacia.” American Journal of Physiology 26: 106–133.

    Google Scholar 

  • Lillie, Ralph S. 1916. “Increase of Permeability to Water following Normal and Artificial Activation in Sea Urchin Eggs.” American Journal of Physiology40: 249–266.

    Google Scholar 

  • Lillie, Ralph S. 1923. Protoplasmic Action and Nervous Action. Chicago: University of Chicago Press.

  • Lillie, Ralph S. 1924. “Reactivity of the Cell.” In E.V. Cowdry (ed), General Cytology. Chicago: University of Chicago Press, pp. 167–233.

  • Lotka, Alfred J. 1925. Elements of Physical Biology. Baltimore, MD: Williams and Wilkins.

    Google Scholar 

  • Lucas, Keith 1906. “The Analysis of Complex Excitable Tissues by their Response to Electric Currents of Short Duration.” Journal of Physiology35: 310–331.

    Google Scholar 

  • Maienschein, Jane 1986. “Arguments for Experimentation in Biology.” PSA 1986 2: 180–195.

    Google Scholar 

  • Maienschein, Jane 1991. “Cytology in 1924.” In Benson, Maienschein and Rainger (eds.), pp. 23–51.

  • Marshall, Louise H. 1983. “The Fecundity of Aggregates: The Axonologists at Washington University, 1922-1942.” Perspectives in Biology and Medicine26: 613–636.

    Google Scholar 

  • Marshall, Louise H. 1987. “Instruments, Techniques, and Social Units in American Neurophysiology, 1870-1950.” In Gerald L. Geison (ed), pp. 351–369.

  • McCulloch, Warren S., Carnap, Rudolf, Brunswik, Egon, Bishop, George H., Meyers, R., Von Bonin, Gerhardt, Menger, Karl, and Szent-Gyorgyi, Albert 1956. “Committee on Mathematical Biology.” Science123: 725.

    Google Scholar 

  • McNeill, William H. 1991. Hutchins' University: A Memoir of the University of Chicago 1929-1950. Chicago and London: University of Chicago Press.

    Google Scholar 

  • Morgan, Thomas H. 1927. “The Relation of Biology to Physics.” Science65: 213–220.

    Google Scholar 

  • Morowitz, Harold J. 1965. “The Historical Background.” In Talbot H. Waterman and Harold J. Morowitz (eds.), Theoretical and Mathematical Biology. NY: Blaisdell, pp. 24–35.

    Google Scholar 

  • Nernst, Walther 1908. “Zur Theorie des elektrischen Reizes,” Pflügers Archiv für die Gesamte Physiologie122: 275.

    Article  Google Scholar 

  • Neurath, Otto. 1931. “Physicalism: The Philosophy of the Viennese Circle.” Monist41(4) 618–623.

    Google Scholar 

  • Pauly, Philip J. 1987. “General Physiology and the Discipline of Physiology, 1890-1955,” In Gerald L. Geison (ed), pp. 195–207.

  • Pearson, Karl 1894. “Contributions to the Mathematical Theory of Evolution.” Philosophical Transactions of the Royal Society of London A. 185: 71–110.

    Google Scholar 

  • Pestre, Dominique 1984. Physique et physiciens en France 1918-1940. Paris: Éditions des Archives Contemporaines.

    Google Scholar 

  • Planck, Max 1917. Vorlesungen über Thermodynamik. Berlin & Leipzig: Walter de Gruyter & Co.

    Google Scholar 

  • Porter, Theodore M. 1986. The Rise of Statistical Thinking 1820-1900. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Provine, William B. 1971. The Origins of Theoretical Population Genetics. Chicago and London: University of Chicago Press.

    Google Scholar 

  • -1978. “The Role of Mathematical Population Geneticists in the Evolutionary Synthesis of the 1930s and 1940s.” In William Coleman and Camille Limoges (eds.), Studies in History of Biology, Vol. 2. Baltimore and London: Johns Hopkins University Press.

  • Rapoport, Anatol 2000. Certainties and Doubts: A Philosophy of Life. Montré al: Black Rose Books.

  • Rashevsky, Nicolas 1928a. “On the Size-distribution of Colloidal Particles.” Physical Review31: 115–118.

    Article  Google Scholar 

  • Rashevsky, Nicolas 1928b. “Zur Theorie der spontanen Teilung von mikroskopischen Tropfen.” Zeitschrift für Physik46: 568–593.

  • Rashevsky, Nicolas 1929. “The Problem of Form in Physics and Biology.” Nature124: 10.

    Google Scholar 

  • Rashevsky, Nicolas 1930. “Bemerkung zur Ionentheorie der Nervenreizung.” Zeitschrift für Physik63: 660–665.

    Google Scholar 

  • Rashevsky, Nicolas 1931a. “Some Theoretical Aspects of the Biological Applications of Physics of Disperse Systems.” Physics1(3): 143–153.

  • Rashevsky, Nicolas 1931b. “Learning as a Property of Physical Systems.” Journal of General Psychology5: 207–229.

    Google Scholar 

  • Rashevsky, Nicolas 1931c. “On the Theory of Nerve Conduction.” Journal of General Physiology14: 517–528.

    Google Scholar 

  • Rashevsky, Nicolas 1932a. “Further Studies on the Theory of Spontaneous Dispersion of Small Liquid Systems which are the Seats of Physico-chemical Reactions.” Physics2: 303–308.

    Google Scholar 

  • Rashevsky, Nicolas 1932b. “Contributions to the Theoretical Physics of the Cell.” Protoplasma16: 387–396.

    Google Scholar 

  • Rashevsky, Nicolas 1932c. “On the Physical Nature of “Cytotropism” and allied Phenomena and their Bearing on the Physics of Organic Form,” Journal of General Physiology15: 289–306.

    Google Scholar 

  • Rashevsky, Nicolas 1933a. “Outline of a Physico-mathematical Theory of Excitation and Inhibition.” Protoplasma20: 42–56.

    Google Scholar 

  • Rashevsky, Nicolas 1933b. “Some Physico-mathematical Aspects of Nerve Conduction.” Physics4: 341–349.

    Google Scholar 

  • Rashevsky, Nicolas 1933c. “A Theoretical Physics of the Cell as a Basis for a General Physico-chemical Theory of Organic Form.” Protoplasma20: 180–188.

  • Rashevsky, Nicolas1934a. “Foundations of Mathematical Biophysics.” Philosophy of Science1: 176–196.

  • Rashevsky, Nicolas 1934b. “The Mechanism of Division of Small Liquid Systems which are the Seats of Physico-chemical Reactions.” Physics5: 374–379.

    Article  Google Scholar 

  • Rashevsky, Nicolas 1935a. “Mathematical Biophysics.” Nature135: 528–530.

    Google Scholar 

  • Rashevsky, Nicolas 1935b. “Mathematical Physics of Metabolizing Systems with Reference to Living Cells.” Physics6: 117–119.

  • Rashevsky, Nicolas 1935c. “Further Studies on Mathematical Physics of Metabolizing Systems with Reference to Living Cells.” Physics6: 343–349.

  • Rashevsky, Nicolas 1936a. “Mathematical Biophysics and Psychology,” Psychometrika1: 1–26.

  • Rashevsky, Nicolas1936b. “Physico-mathematical Aspects of Excitation and Conduction in Nerves.”Cold Spring Harbor Symposia on Quantitative Biology, Vol.IV.The Biological Laboratory: Cold Spring Harbor, NY, pp.90–97.

  • Rashevsky, Nicolas1937. “Physico-mathematical Methods in Biological and Social Sciences.” InR. Carnap and H. Reichenbach (eds.),Das Kausalproblem: Zweiter Internationaler Kongress für Einheit der Wissenschaft., Erkenntnis6(5/6): 357–365.

  • Rashevsky, Nicolas1938. Mathematical Biophysics: Physicomathematical Foundations of Biology.Chicago: University of Chicago Press.

  • Rashevsky, Nicolas 1940. Advances and Applications of Mathematical Biology. Chicago: University of Chicago Press.

  • Rashevsky, Nicolas 1948. Mathematical Biophysics (Revised Edition). Chicago: University of Chicago Press.

  • Rashevsky, Nicolas 1954. “Topology and Life: In Search of General Mathematical Principles in Biology and Sociology.” Bulletin of Mathematical Biophysics16: 317–348.

  • Rashevsky, Nicolas (ed). 1962. Physicomathematical Aspects of Biology. New York and London: Academic Press.

    Google Scholar 

  • Rashevsky, Nicolas and Rashevsky, Emile 1927. “Uber die grössen Verteilung in reveersiblen polydispersen Systemen.” Zeitschrift für Physik46: 300–304.

    Article  Google Scholar 

  • Rashevsky, Nicolas and Landahl, Herbert D. 1940. “Permeability of Cells, its Nature and Measurement from the Point of View of Mathematical Biophysics.” Cold Spring Harbor Symposia on Quantitative BiologyVIII: 9–16.

    Google Scholar 

  • Reiner, John M. 1941. Review of Advances and Applications of Mathematical Biology (1940) by N. Rashevsky. Philosophy of Science8(1): 133–134.

  • Richards, Oscar W. 1925. “The Mathematics of Biology.” American Mathematical Monthly32: 30–36.

    Article  Google Scholar 

  • Rosen, Robert n.d. “Reminiscences of Nicolas Rashevsky.” Unpublished Manuscript, pp.63–82.

  • Rosen, Robert n.d. 1972. “Nicolas Rashevsky 1899-1972.” InRobert Rosen and F.M. Snell (eds.), Progress in Theoretical Biology, Vol.II. New York and London: Academic Press, pp.xi–xiv.

  • Rosen, Robert n.d. 1991. Life Itself: A Comprehensive Inquiry Into the Nature, Origin, and Fabrication of Life. New York: Columbia University Press.

  • Ruse, Michael 1973. The Philosophy of Biology. London: Hutchinson University Library.

    Google Scholar 

  • Schrecker, Ellen W. 1986. No Ivory Tower: McCarthyism and the Universities. New York: Oxford University Press.

    Google Scholar 

  • Schweber, Silvan S. 1986. “The Empiricist Temper Regnant: Theoretical Physics in the United States, 1920-1950.” Studies in the Physical and Biological Sciences17(1): 55–98.

    Google Scholar 

  • Sigurdsson, Skúli 1996. “Physics, Life, and Contingency: Born, Schrödinger, and Weyl in Exile.” In Mitchell G. Ash and Alfons Söllner (eds.), Forced Migration and Scientific Change: Emigré German-Speaking Scientists and Scholars after 1933. Cambridge, New York, London: Cambridge University Press, pp. 48–70.

    Google Scholar 

  • Simon, Herbert A. 1951. Review of Mathematical Biology of Social Behavior. By Nicholas Rashevsky. Econometrica19(3): 357–358.

  • Tiselius, A. 1960. “Kaj Ulrik Linderstrøm-Lang,” Biographical Memoirs of Fellows of the Royal Society6: 157–68.

    Google Scholar 

  • Volterra, Vito 1931. Leçons sur la Théorie Mathématique de la Lutte pour la Vie. Paris: Gauthier-Villars et Cie.

    Google Scholar 

  • Von Bonin, Gerhardt 1939. Review of Mathematical Biophysics: Physico-Mathematical Foundations of Biology, by Nicolas Rashevsky. Psychometrika 4(1): 69–72.

    Article  Google Scholar 

  • Weinberg, Alvin 1994. The First Nuclear Era: The Life and Times of a Technological Fixer. New York: AIP Press.

    Google Scholar 

  • Wise, George 1985. Willis R. Whitney, General Electric, and the Origins of U.S. Industrial Research. New York: Columbia University Press.

    Google Scholar 

  • Wolbarsht, Myron L. 1963. Review of Physicomathematical Aspects of Biology. Ed. Nicolas Rashevsky. Quarterly Review of Biology 38(4): 427–428.

  • Woodger, Joseph H. 1937. The Axiomatic Method in Biology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Wright, Sewall 1931. “Evolution in Mendelian populations.” Genetics 16: 97–159.

    Google Scholar 

  • Young, John Z. 1936. “The Structure of Nerve Fibres in Cephalopods and Crustacea.” Proceedings of the Royal Society of London B121: 319–337.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abraham, T.H. Nicolas Rashevsky's Mathematical Biophysics. Journal of the History of Biology 37, 333–385 (2004). https://doi.org/10.1023/B:HIST.0000038267.09413.0d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HIST.0000038267.09413.0d

Navigation