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Abstract. Since discovering the pattern by which amino acids are assigned to codons within the
standard genetic code, investigators have explored the idea that natural selection placed biochemic-
ally similar amino acids near to one another in coding space so as to minimize the impact of mutations
and/or mistranslations. The analytical evidence to support this theory has grown in sophistication and
strength over the years, and counterclaims questioning its plausibility and quantitative support have
yet to transcend some significant weaknesses in their approach. These weaknesses are illustrated
here by means of a simple simulation model for adaptive genetic code evolution. There remain ill
explored facets of the ‘error minimizing’ code hypothesis, however, including the mechanism and
pathway by which an adaptive pattern of codon assignments emerged, the extent to which natural
selection created synonym redundancy, its role in shaping the amino acid and nucleotide languages,
and even the correct interpretation of the adaptive codon assignment pattern: these represent fertile
areas for future research.
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1. Introduction

The evolution of the genetic code ranks among the most significant transitions
in the history of life on earth (Szathmary et al., 1995). Before biological coding
emerged, the hypothesized RNA world, in which a single biopolymer performed
both as genetic information and metabolically functional phenotype, forms one of
the best supported models for the early evolution of life (Gesteland et al., 1993;
Gesteland et al., 1999). Since that time, not only have all organisms split into
a dichotomy of nucleic acid genotype and protein phenotype, but the code that
bridges this dichotomy has influenced the general process of molecular evolution.
For example, the pattern of codon assignments within the code defines the relative
frequencies with which amino acids interconvert as the result of random nucle-
otide substitutions in protein coding genes (Fitch, 1966a, b) and the redundancy
with which each is encoded correlates well with the composition of the proteome
(King et al., 1969; Knight et al., 2001c). Though natural selection may distort
these underlying patterns, it operates upon translated protein phenotypes. Thus the
genetic code determines what natural selection ‘sees’ and the precise coding rules
of a genome influence both the neutral and adaptive evolution that occur within it.
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Understandably then, the topic of how and why the genetic code itself evolved
has received considerable attention from the evolutionary research community.
However, the general topic of ‘genetic code evolution’ comprises at least 3 po-
tentially independent lines of enquiry. First, we may enquire how and why did
genetic coding originate (e.g. Szathmáry, 1999; Knight et al., 2000a)? Second, how
and why did the standard genetic code emerge prior to the last universal ancestor
of modern life (e.g. Di Giulio 1997; Knight et al., 1999)? Third, how and why
has this standard code subsequently diverged in numerous distinct lineages (e.g.
Osawa, 1995; Knight et al., 2001a)? Although suggested syntheses of answers to
all of these questions periodically surface (e.g. Davis, 1999) they must, at present,
rely on anecdotal evidence and speculation to navigate through more gray areas
than is comfortable for scientific enquiry, given that each sub-topic comprises very
different theories that continue to maneuver relative to one another in the face of
emerging evidence (e.g. see Hartman, 1975, 1978, 1984, 1995a, b).

In particular, the past decade has seen significant maturation of explanations as
to why specific amino acids were assigned to specific codons within the standard
genetic code, producing the pattern that links primordial evolutionary events to
the general molecular evolutionary dynamics of the biosphere. Mainstream theory
has coalesced around 3 major themes (Knight et al., 1999): (1) codon assignments
reflect the RNA/amino acid direct stereic interactions from which it arose (Sowerby
et al., 1998; Knight et al., 2000a; Yarus, 2000), (2) the amino acid (e.g. Trifonov et
al., 1997; Di Giulio, 1998; Trifonov, 2000) and perhaps nucleotide (Crick, 1968;
Eigen, 1971; Shepherd, 1981; Baumann et al., 1993; Jimenez-Sanchez, 1995; Tri-
fonov et al., 1997) alphabet have grown in complexity since the origin of coding,
and (3) the pattern of amino acid assignments within the standard code exhibits
adaptive features that were produced by natural selection. At a general level, grow-
ing evidence for each theory renders it increasingly unlikely that they represent
competing alternatives (Woese et al., 1966; Crick, 1968), but rather that all con-
tributed to the emergence of the standard genetic code (Di Giulio, 1997; Knight
et al., 1999). At the edges of this debate, entirely novel explanations for its form
continue to emerge but tend to be so entirely divorced from a recognized biological
context, whether through mathematical abstraction (e.g. Bashford et al., 1998) or
speculation (e.g. Davydov, 1996, 1998) as to contribute little to the debate.

Among these major themes, the nature and extent of natural selection as a
determinant of codon assignments is critical to our overall interpretation of pat-
terns within the standard genetic code. For example, the simplest synthetic theory
assumes a straightforward succession of evolutionary factors: biological coding
originated through stereochemical interactions, the primordial code then gained
new amino acids as primitive metabolism biosynthesized novel, adaptive amino
acids and finally random variations to coding rules were filtered by natural selection
to produce an ‘error minimizing’ pattern of codon assignments. Under this model,
selection operates independently from the previous evolutionary forces, potentially
overwriting the footprints of stereochemical origins and biosynthetically mediated
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code expansion. As a consequence of assuming this model, the strength of natural
selection has been gauged by the presence or absence of biosynthetic patterns
within the code (Di Giulio, 1998; Freeland et al., 1998) and by the precise level
of optimization displayed by the standard code relative to theoretical alternatives
(Wong, 1980; Goldman, 1993; Di Giulio, 1989, 1991, 2000; Di Giulio et al., 1994;
Judson et al., 1999). Indeed, the detailed evidence for each putative evolutionary
factor remains hotly debated (e.g. Ellington et al., 2000 vs. Knight et al., 2000;
Di Giulio, 1999b vs. Szathmáry, 1999; Di Giulio, 1999a vs. Amirnovin, 1997;
Di Giulio, 2001a vs. Freeland et al., 2000; Di Giulio, 2001b vs. Ronneberg et
al., 2000), often focusing on the validity of explicit quantitative claims that have
been advanced to support each theory. However, the recent reviews of the gen-
eral case for stereochemical patterns (Knight and Landweber, 2000; Yarus, 2000),
and biosynthetic patterns (Di Giulio, 1998), have yet to be mirrored for the error
minimizing genetic code.

In this context, our purpose here is to review the history and growth of the
evidence for an adaptive arrangement of codon assignments within the standard ge-
netic code, explore the validity of key criticisms, and highlight alternative, equally
parsimonious interpretations of current evidence that have been largely overlooked,
in the hope of stimulating debate into new productive territory.

2. Early Evidence for an Error Minimizing Genetic Code

Even before the full details of the standard genetic code were formally presented
(Frisch, 1966), researchers began to report some decidedly non-random charac-
teristics. In particular, attention in some quarters focused on the ‘block’ structure
of codon assignments: for every amino acid (except, to some extent, Serine) no
other pattern of amino acid assignments would present a more connected set of
synonymous codons. This prompted two independent proposals (Sonneborn, 1965;
Zuckerkandl et al., 1965) that the codon assignments of the standard code reflect
an adaptive outcome of natural selection for ‘error minimization’. Both hypotheses
limited themselves to the argument that ‘better’ codes are those in which a higher
proportion of random nucleotide substitutions result in no change to amino acid
meaning. Thus, long before formal recognition and analysis of problem of ‘error
catastrophe’ within unsophisticated replicators (Eigen, 1971; Eigen et al., 1979;
Kauffman, 1993), the underlying concept of error-limited primordial evolution was
partially addressed by these hypotheses.

However, Crick’s (1966) subsequent ‘wobble hypothesis’, which invoked noth-
ing more than stereochemical constraints on a tRNA’s ability to discriminate codons,
offered a simpler and more intuitive explanation for the same phenomenon and,
ever since, the contiguity of synonymous codons has been largely ignored except
by non-biologists (e.g. Cullman et al., 1983, 1987; Figureau et al., 1984, 1987,
1989). Instead, the concept of error minimization was taken to a new level of soph-
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istication by Woese’s (1965) seminal observation that different amino acids with
similar biochemical characteristics were assigned to codons connected in mutation
space. In particular, he observed that the hydrophobicity of an amino acid’s side
chain correlates well with its position within the code, a property that would intuit-
ively form a key role in the process by which peptide chains fold into 3-dimensional
structures with sophisticated catalytic activities within the watery cytoplasm of
the cell (see Pace et al., 1996; Tomii et al., 1996 for recent corroboration of this
point). Woese went further, observing (qualitatively) that the spatial/biochemical
correlations between coding space and amino acid hydrophobicity were consistent
with existing research into general patterns of translational error (Woese, 1965,
1973). For example, mistranslation events were found to occur with highest fre-
quency at the third codon position (Davies et al., 1964; Friedman et al., 1964),
where similarities in coded amino acid hydrophobicity are most pronounced. It
is noteworthy that since the 1960’s, these pioneering, general studies of in vitro
mistranslation have been almost completely replaced by context specific studies of
in vivo mistranslation (e.g. Parker, 1989; Stahl et al., 2002): it would be of great
significance to our understanding of genetic code evolution if modern technologies
were used to replicate and extend this exploratory 1960’s analysis of artificially
magnified mistranslation patterns.

In several restricted forms, the general idea reported by Woese (1965) was
explored quantitatively using early computational methods (Volkenstein, 1965; Ep-
stein, 1966; Goldberg et al., 1966). Of particular note, Alff-Steinberger (1969)
performed one of the earliest biological Monte Carlo simulations, comparing the
standard code against 200 alternatives in terms of error minimization for several
fundamental metrics of amino acid similarity. However, these studies ignored the
subtleties of pattern inherent to translation that Woese had noted, assuming that
all nucleotide interconversions are equally likely regardless of base identity or
codon position. Meanwhile, the apparent universality of codon assignments across
life paved the way for Crick’s (1968) influential ‘Frozen Accident’ hypothesis.
This asserted that changing any codon assignment would effectively introduce
numerous, simultaneous errors throughout the genome of an organism such that
the deleterious effects would far outweigh the advantage of any improvement in
coding strategy. In other words the code could not have been optimized because it
was incapable of variation. The beguiling simplicity of this argument complemen-
ted a history of ingenious theoretical predictions for the code that subsequently
turned out to be utterly wrong, from direct templating codes (e.g. Gamow, 1954;
Gamow et al., 1955) to reading-frame independent ‘comma-less’ codes (Crick et
al., 1957: see Hayes (1998) for a thorough introduction), feeding skepticism about
interpreting apparent patterns within the standard code.

Thus, during the following decade, it was the very different idea of biosynthetic
relationships between amino acids reflected in the standard code that rekindled
interest in a possible significance to the pattern of codon assignments. Dillon’s
(1973) seminal work, though incorrect in biochemical detail, paved the way for
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Wong’s (1975, 1976, 1980, 1981, 1988; Wong et al., 1979) much more thorough
development of this ‘coevolution’ hypothesis, and adaptive analyses assumed a
rather low profile.

Eventually the credibility of the ‘frozen accident’ argument was shaken by the
discovery of a non-standard genetic code within vertebrate mitochondria (Barrell
et al., 1979). Some initial reactions sought to downplay the significance of this
find, interpreting this aberrant code as either a genetic ‘fossil’ of an ancestral code
from which the standard code subsequently evolved (Jukes, 1981; Grivell, 1986),
or as a unique consequence of the fact that vertebrate mitochondria encoded so few
protein products (Hasegawa et al., 1980). Gradually, however, the steady discovery
of new variant genetic codes (see Knight et al., 2001a, for a review), all secondarily
derived from the standard code, has shown that even within the large, complex
genomes of extant organisms, codon assignments are flexible. Though the causes,
and some of the mechanisms for such changes remain imperfectly understood
(see Knight et al., 2001a, b) the message that codon assignments can vary over
evolutionary time is clear.

3. Recent Quantitative Support for an ‘Error Minimizing’ Standard Genetic
Code

The knowledge that codon assignments are evolutionarily flexible lies a long way
from demonstrating that the standard genetic code is a product of adaptive evolu-
tion. In particular, it remains to formally render the concept of an ‘error minimiz-
ing’ genetic code as a testable hypothesis. Several novel analyses attempted to do
just this during the 1980’s but all introduced unnecessary new assumptions: claims
for a Baudot genetic code (Cullman and Labouygues, 1983, 1987) or a Gray genetic
code (Swanson, 1984) both hinted at an adaptive pattern of codon assignments, but
both relied on methodologies brought from abstract coding theory with elements
that lie beyond an obvious biological relevance (e.g. that the similarity of coded
objects, in this case amino acids, is best measured on a ring rather than as a simple
linear metric).

The first step towards applying modern computing power to a straightforward
quantitative test of Woese’s (1965) qualitative claims came later (Haig et al., 1991).
The methodology was essentially an extension of Alff-Steinberger’s (1969) Monte
Carlo approach� , a simple 3-step process: first quantify a given code’s susceptibility
to errors (i.e. mutations); second, define a set of possible code structures of which
the standard genetic code is one example; third, generate a large sample of codes

� The results of Haig et al. (1991), however, are at odds with those of Alff Steinberger (1969).
As the latter’s results have proved irreproducible, both by us and others (Knight and Burch, pers.
comm.), whereas those of Haig and Hurst have been verified by us and others (Burch, pers. Comm.,
but see Haig et al., 1999), it appears that Alff Steinberger contributed the idea and the method, but
not the first results in this lineage of analysis.
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Figure 1. Calculating the error value of a code: (a) Quantifying errors: first, take a quantitative index
that describes some physiochemical property of each amino acid (in this case, we use values of
Polar Requirement, a measure of hydrophobicity). Then take a codon (here, UUU = Phe) and a
possible alternative meaning that can be reached by mutating or misreading a single nucleotide (e.g.
UCU = Ser). Hence quantify the difference between actual and intended amino acid meanings (e.g.
Phe→Ser corresponds to |5.0 − 7.5| = 2.5) for the error in question. Repeat this process for all
possible single nucleotide errors, and then for all codons of the code under scrutiny. Divide this
total summed error value by the number individual pair-differences from which it is comprised to
produce �code, the code’s error value. This is a quantification the average magnitude associated
with single nucleotide errors to organisms that use this code. However, not all of the possible errors
occur with equal frequency. In particular, the unequal chemical similarity of the 4 nucleotides to one
another means that transition errors (U↔C, A↔G: codons that lie a transition error away from codon
UUU are shown here in gray) occur more frequently than transversions (C or U↔A or G). This can
be incorporated into calculautions of �code by giving an arbitrary weighting W (>1) to differences
caused by transition errors (i.e. UUU:Phe→UCU:Ser would receive this weighting factor) when
calculating individual errors prior to summation. A final level of sophistication may be added by
giving an additional weighting to individual errors according to whether they correspond to changes
in the first, second or third codon position. A strong base effect has been noted for translational errors.
(b) Defining a set of possible codes. For most Monte Carlo analyses of the adaptive code, ‘possible
codes’ are defined as those which maintain the pattern of synonymous coding (i.e. redundancy) found
within the standard genetic code. This conservative restriction controls for possible biochemical
restrictions on code variation, and biases analysis against a false positive result for the adaptive
hypothesis (see text for detailed discussion).

that meet this definition, and find where the standard code lies relative to the rest
of the sample according to this measurement of error susceptibility.

For the first step, Haig et al. (1991) took several quantitative measures of amino
acid similarity and used each of them to calculate the arithmetic mean change of
all pairs of actual and intended amino acids that can result from single nucleotide
errors within a codon (Figure 1a). Extending this process to all the codons of a code
produces a quantitative measure of a code’s susceptibility to error (its ‘error value’,
�code). For the second step, assuming the 4 bases, 64 codons, 20 amino acids and
the (imperfectly understood) pattern of redundancy found within the standard code
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Figure 2. A comparison of �code for the standard genetic code with equivalent values for 1 million
randomly generated codes: (a) Without any transition bias or codon-position weighting, measuring
amino acid similarity in terms of Polar Requirement (a measure of hydrophobicity), a proportion of
0.0001 codes within the random sample provide a lower �code value than the standard genetic code
(Haig et al., 1992); (b) Mapping experimentally determined patterns of mistranslation onto �code
reduces this figure by 2 orders of magnitude (Freeland et al., 1998).

as fixed, they defined a set of possible codes that comprises 20! or 2.4 × 1018 mem-
bers: each is a possible 1:1 mapping of the 20 amino acids to the 20 synonymous
coding blocks (Figure 1b). For the third step, they generated a sample of 10 000
random genetic codes and found that for one measure of amino acid hydrophobicity
(‘Polar Requirement’, Woese et al., 1966) only 2 random codes provided a smaller
average change in amino acids (Figure 2a) than the standard code. Statistically
significant (though quantitatively weaker) support for an ‘error minimizing’ code
was reported for other measures of amino acid hydrophobicity, but not for other
chemical properties of the amino acids such as charge and size; (but see Haig et al.,
1999). These findings complemented various multivariate statistical analyses that
had sought correlations between physiochemical measures of amino acid similarity
and codon assignments (e.g. Szathmary et al., 1992).

Analysis was then extended to incorporate biological biases that are known to
influence patterns of mutation (Ardell, 1998) and finally mistranslation (Freeland
et al., 1998). Using polarity to measure amino acid similarity, the perceived op-
timality of the code increases 1 order of magnitude when calculations are adjusted
to incorporate a reasonable transition bias, as justified by both biochemical first
principles (Topal et al., 1976) and wherever nucleotide substitution patterns have
been estimated for real sequence data (Wakeley, 1994; Petrov et al., 1999), and a
further order of magnitude when they are adjusted to reflect the fact that the three
positions of a codon are not misread with equal frequency: the first quantification of
Woese’s (1965) observations revealed that the standard genetic code outperformed
999,999 out of a sample of 1 million random alternatives (Freeland et al., 1998)
(Figure 2b).
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Complementary analyses revealed that these results are qualitatively robust to
possible confounding factors of biosynthetic relatedness (Freeland et al., 1998; but
see Di Giulio et al., 2001) and methodological variation (Freeland et al., 2000).
Since then, further insights have continued to build the sophistication of the ar-
gument: for example, the amino acid composition of the proteome enhances the
perceived adaptation of the code, and this is especially pronounced when multidi-
mensional measures of amino acid similarity are derived to replace polarity (Gilis
et al., 2001). One of the most interesting refinements is the finding that the first-
and second-position nucleotides of a codon have a roughly consistent, additive
effect on several amino acid properties, smoothing the connectivity of the coded
protein landscape (Aita et al., 2000) perhaps rendering natural selection’s ‘search’
of protein phenotype more efficient.

However, all this evidence may be considered ‘top-down’ approach to testing
the error minimizing hypothesis (Szathmáry et al., 1995): it asks simply whether
the pattern of codon assignments seen in the standard genetic code meets the ex-
pectations of selection for error minimization. Far less research has been carried
out to assess the mechanisms and pathways that would lead to an adaptive organ-
ization of codon assignments from a random (or sterically determined) starting
point. Szathmáry (1991) produced a toy model of code evolution based on the
‘codon capture’ (Osawa et al., 1989) model of reassignment. He showed that under
oscillating GC/AT mutational biases, any two codon identities that are adjacent
within the code can swap, lending mechanistic credibility to the general adaptive
claims. More recently, Ardell and Sella (Ardell et al., 2001; Sella et al., 2002)
have begun to develop a far more sophisticated model of adaptive code evolution:
their unique contribution has been to model the interaction (coevolution) of codes
with associated genomes, recognizing the potential differences between selection
on a genetic code as opposed to other phenotypic traits. In particular, theirs is
the first mechanistic model to incorporate Crick’s (1968) objection that any codon
reassignment event introduces potentially profound disruption on the existing gen-
ome. Though their model has yet to expand to a full, 64 codon representation,
already they have shown that significant code optimization does take place, and that
key features of the standard genetic code are reliably produced in all simulations.
Clearly, this sort of model presents an excellent approach to further analysis of the
codon assignment evolution, whether inferred (for the standard genetic code) or
observed (for secondary code variation, e.g. within metazoan mitochondria).

4. Objections to the Error Minimizing Code

Against this evidence, one lineage of critical analysis has repeatedly disputed that
the standard genetic code is adapted to minimize the effects of genetic errors,
asserting that selection has been a weak and minor factor in steering codon as-
signments. The most frequent form of this criticism has been the repeated use of
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analytical calculus (Wong, 1980; Di Giulio, 1989) or powerful computer search
algorithms (Di Giulio, 1991, 1999, 2000; Di Giulio et al., 1994; Goldman, 1993;
Judson et al., 2000) to demonstrate the existence of theoretical codes that would
minimize errors to a significantly greater extent than the standard genetic code.
Problematically, however, all such studies have consistently failed to address the
peculiar susceptibility of powerful computer searches to the GIGO (garbage-in-
garbage-out) computing principal (Freeland et al., 2000b): computer predictions
for an optimal code (or anything else) are necessarily limited to the optimization
criteria provided by the programmer, and even subtle changes to these criteria
can lead to very different predictions. By analogy, a program asked to produce
an optimal design for a fuel efficient airliner is unlikely to design something with
space for a hundred passengers with luggage if this is not made an explicit require-
ment. In terms of genetic code optimization, there are two key vulnerabilities: the
quantification of amino acid similarity, and the assumed model by which mutations
(or mistranslations) occur.

The evolutionary similarity of amino acids (meaning their substitutability within
proteins) is unlikely to be perfectly represented by a single physiochemical meas-
ure (e.g. Polar Requirement) or indeed by any simple combination of two or three
such indices. Instead we have every reason to expect that amino acid similarity is
a multidimensional concept that remains far from fully understood: it may well be
a partly relative phenomenon, dependent on the precise sequence of amino acids
within a protein, rendering the concept of an ‘averaged’ similarity somewhat fuzzy.
Attempts to obviate this problem by measuring similarity directly from estimates of
the frequencies with which amino acids substitute for one another within real pro-
teins do suggest the code to be close to a global optimum (Ardell, 1998; Freeland et
al., 2000a), but have been criticized as tautologous given a correlation between the
code and patterns of substitution (Di Giulio, 2001b), though the flow of causality in
this correlation is yet to be determined. Encouragingly, a recent attempt to derive a
multidimensional measure of amino acid similarity that is truly independent from
the code supports the counter criticism: the more sophisticated our representation
of similarity, the better the code appears (Gilis et al., 2001).

On a related theme, almost all criticisms of the adaptive theory have assumed
the pre-Woese (1965) idea that all nucleotides mutate/misread for one another with
equal frequency despite plentiful, well documented evidence to the contrary (e.g.
Wakeley, 1994; Petrov et al., 1999; Topal et al., 1976). In fact, the only study to
incorporate even a straightforward transition bias (Di Giulio et al., 2001) also in-
troduced a set of highly contentious (Amirnovin, 1997; Amirnovin et al., 1999; Di
Giulio, 1999; Di Giulio et al., 2000, 2001; Ronneberg et al., 2000) biosynthetically
derived restrictions on possible codon assignments, hindering a straightforward in-
terpretation of results. Thus, estimates of the standard genetic code’s optimization
relative to engineered ‘perfect’ codes that are quoted as exact figures to tenths of
a percentage point (Di Giulio, 1989, 1991, 2000; Di Giulio et al., 1994, 1999), are
misleading in their apparent accuracy (Figure 3): not even the existence of biologic-
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ally meaningful better codes has truly been demonstrated conclusively. In contrast,
the results derived from Monte Carlo simulations are qualitatively robust to fine-
tuning of the index of amino acid similarity, given that the standard genetic code
lies at the edge of the Gaussian distribution of possible levels of error minimization
(Freeland et al., 2000a, b).

A separate and more subtle problem with criticisms based on the existence of far
better codes is that, even assuming they are what the programmer considers them to
be, none have been rigorously investigated in terms of evolutionary accessibility.
This is of key significance because arguments for an adaptive pattern of codon
assignments is about an evolutionary, rather than ‘engineering’, optimum (Di Gi-
ulio, 1989; Freeland et al., 2000a, b). Indeed, the search algorithms used to identify
optimal theoretical codes are deliberately designed to surpass the blind, stepwise
(and asymptotic) process of improvement by which natural selection is thought
to proceed (e.g. see Di Giulio et al., 1994; Judson and Haydon, 1999). The only
critical study to address this issue by directly simulating code evolution (Di Giulio
et al., 2001) also incorporated an unusual tolerance for maladaptive evolutionary
steps, a different measure of amino acid similarity and a mutational mechanism of
‘block reassignments’ to produce a model that the authors themselves described as
‘totally unrealistic’ (Di Giulio et al., 2001, p. 379), placing something of a question
mark over the results’ precise relevance to general claims for an adaptive pattern
of codon assignments.

To illustrate the significance of these counter criticisms, we have developed a
simple computer simulation of code evolution. The simulation takes place over
successive, discreet generations. Each generation begins with a ‘parent’ genetic
code (at the start of the simulation, this parent is formed by randomly assigning
amino acid meanings to codons). The program creates 10 ‘offspring’ genetic codes
from this parent, each offspring differing by 1 random mutation (a single codon
reassignment) from the ‘parent’. Associated �code values are then calculated, as
described in Figure 1, for each of these offspring codes. The parent code (and
associated �code value) is then added to create a set of 11 codes, from which
the program selects the code with the lowest associated �code value (or, failing
the emergence of an adaptive mutation, the parent is retained). This ‘fittest’ off-
spring then becomes the parent for the next generation. The program stops when
it achieves a given threshold value for �code. The inclusion of the parent in each
generation simply reflects the assumption that at no point in the ancestral lineage
of the standard genetic code did no offspring possess an unmutated genetic code.
Copies of this program are available on request from the corresponding author.

Results (Table I) show that when it is assumed that all nucleotides mutate/are
misread for one another with equal probability, it is indeed not difficult to evolve
from a random genetic code to one that displays the same degree of ‘error minimiz-
ation’ as the standard code (specifically, in 1000 simulations, it took an average of
25 codon reassignments, and left an average of 42 out of 64 codons unchanged in
their amino acid assignment). When a mild transition bias is introduced (consistent
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TABLE I

Results of a simple simulation for adaptive evolution of genetic code codon assignments
under a range of assumptions. Each simulation began with a random genetic code, and
a target �code value (representing the quantitative error minimization of the standard
code under the assumptions of the simulation). For each set of assumptions, we record
the number of generations taken to reach the target level of ‘error minimization’, and the
number of codon assignments that remain unchanged in the course of this optimization.
Assumptions reflect the calculation of �code both for the standard genetic code (i.e. the
target �code value) and for the theoretical codes of the simulation, and are described in
the text

Description Number of generations Number of codons unchanged

Mean Std. Dev. (3sf) Mean Std. Dev. (3sf)

No transition bias 25 8.60 42 5.38

Transition bias of 2 33 8.37 37 7.68

Transition bias of 9 70 28.4 25 7.81

Mistranslation (most simulation runs fail to reach the target �code value after

parameters 10 000 generations)

with estimates from modern pseudogene sequence data, Petrov et al., 1999), the as-
sociated improvement in our perception of the standard code’s adaptation increases
this slightly to 33 reassignments and only 37 codons remain unchanged. When the
transition bias is increased to meet the predictions from biochemical first principals
(Topal et al., 1976), which might be construed as a better estimate for a primordial
genome unfettered by sophisticated error checking/repair molecular machinery, it
takes an average of 70 mutational steps to match the standard code’s adaptation
(though a surprisingly high average of 25 codon assignments remain unchanged
from the start to the end of the simulation). Finally, when we introduce the crude
estimates of mistranslation patterns into the code, including a base position effect
for the codon/anticodon match (derived from Friedman et al., 1964, via Woese,
1965, as quantified by Freeland et al., 1998a), we find that after 10 000 generations,
the program has usually failed to match the target error minimization value of the
standard genetic code. We advance these results as unambiguously demonstrating
that, beyond the problem of accurately measuring amino acid similarity, the mere
existence of far ‘better’ genetic codes is of dubious relevance to arguments about
the strength of selection acting on codon assignments of the standard genetic code.
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5. Interpreting the Error Minimizing Genetic Code

Continued and somewhat repetitive debate over the quantitative details of an ad-
aptive pattern of codon assignments within the standard genetic code has hindered
development of a deeper debate over the interpretation of the general observation.

The results we present above, and most of this review have focused on the
simplest interpretation: that amino acid assignments were shuffled according by
natural selection to produce an error minimizing code, but this is by no means
the only plausible explanation. Assuming that the general idea of biosynthetically
mediated code expansion is correct, and only the detailed interpretation requires
caution (Ronneberg et al., 2000), then there is no reason to preclude the possibility
that novel amino acids were incorporated on an adaptive basis either in terms of
their properties (for a fixed location in the code), or in terms of their location (for a
fixed set of properties), or in some combination of both. This is certainly consistent
with current evidence for an adaptive genetic code (Freeland et al., 1998b), and the
recent simulation studies that assume one specific, controversial model of biosyn-
thetic expansion (Di Giulio et al., 2001) could usefully be broadened to consider
non-coded amino acids and a more flexible expansion pathway.

Other, subtler nuances have been offered for the error minimizing code: one
is that the earliest genetic code was wholly or partially ambiguous (i.e. no one
codon was assigned to any single amino acid), but that an ensuing positive feedback
process saw increasingly sophisticated proteins permitting (and requiring) a code
of greater accuracy (Fitch, 1966; Woese, 1973). This process would, it was argued,
ultimately produce a code in which mutationally connected codons were assigned
to amino acids with similar biochemical properties. Subsequent analysis of tRNA
phylogeny concluded support for the theory (Fitch et al., 1987) but other studies of
tRNA phylogeny have come to very different conclusions (e.g. Di Giulio, 1994),
and it may be that tRNA’s are too evolutionarily labile to use in this context (Knight
et al., 1999). Interestingly, given this background, the recent code/genome coe-
volution simulations (Ardell et al., 2001; Sella et al., 2002) assume this ambiguous
coding as a start point for code evolution. They find that a process of ambiguity
reduction does indeed lead to an ‘error minimizing’ genetic code, though they also
find that codon reassignments continue long after ambiguity has ended.

A stark alternative is the residual possibility that the standard genetic code
could display adaptive properties without ever having been selected. In particular,
recent experimental work has given new life to the old idea of direct templating
between nucleic- and amino acids by demonstrating a surprising affinity between
various amino acid side-chains and their associated anticodons/codons within the
standard code (Yarus, 2000). Although the association is somewhat mystifying in
a code with ancient adaptor tRNA’s, the association appears statistically robust
(Knight et al., 1998, 2000b; Ellington et al., 2000; but see Illangasekare, 2002)
and the emphasis has moved to tentative theoretical explanations (see Szathmáry,
1999; Knight et al., 2000a). If such associations are found for all amino acids,
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this could suggest that widespread adaptive codon reassignments never took place:
although the genetic code exhibits adaptive error minimizing properties, they could
be a byproduct of stereochemical interactions from which the code arose (though
it would also remain plausible that such interactions merely acted together with
selection to steer particular amino acids into the primordial code). At present, just
a handful of amino acids and, while the general pattern is clear, not all show
stereochemical affinity for their codons (Illangasekare et al., 2002): it remains
parsimonious that any footprint of a stereochemical code was partially overwritten
by adaptive reshuffling (or ambiguity reduction, or selection- mediated biosyn-
thetic expansion) and that we are seeing the remnants left untouched by selective
reassignment. But it is interesting to note that the original development of the Polar
Requirement (Woese et al., 1966) was to test for a stereochemically determined
code on the assumption that 2,6-dimethyl pyridine might mimic nucleotides.

To illustrate the sheer scope of possible interpretations for an error minimizing
genetic code, one of us (Freeland, 2002) has recently drawn attention to Fisher’s
‘geometric theorem’ (Fisher, 1930), a simple abstract model of evolution that pre-
dicts an inversely proportional relationship between the magnitude of effect of a
random mutation and the probability that it will represent an adaptive improvement
for a pleiotropic trait. Now, the pattern of amino acid assignments found within the
standard genetic code is such that random nucleotide substitutions produce smaller
differences in amino acid polarity than would be true for most other codes: we
propose that this might maximize the probability of adaptive evolution wherever
change is required (Freeland, 2002). This hypothesis invokes clade selection: or-
ganisms using such a code came to dominate primordial ecosystems because, over
multiple generations, their offspring tended to win out in intraspecific struggles
whenever environmental or biotic factors induced selective pressure for change.
For now, the suggestion remains an intriguing possibility: evaluating its plausibility
will require extensive simulations to test whether an error minimizing code can
spontaneously emerge by out-competing alternatives over a broad range of condi-
tions whenever genome change is required. However, it serves to illustrate the point
that a code which maximizes the similarity of mutationally connected codons need
not necessarily be a product of selection for minimizing the deleterious impact of
errors.

6. The Extent of Adaptive Coding Properties

Finally, it is of course true that codon assignments represent just one aspect of
how the standard code evolved: the wider context of how natural selection has
influenced its form remains unclear. In part, this is because the ‘genetic code’
references a highly complex set of molecular machinery that creates a general
interface between genetic information and all the protein products of an organism,
and at a trivial level it is clear that the genetic code is adaptive in many senses. For
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example, the aminoacyl tRNA synthetase enzymes, the tRNA’s that they charge
with amino acids and the ribosomes that coordinate translation cooperate to per-
form a highly sophisticated metabolic function: selection must have played a major
role in coordinating this interaction. However, beyond such biochemical detail,
several general properties may be abstracted by considering that every code is, in
essence, a mapping function that connects a set of elements in one language to a
set of elements in a second language. As such, three potential foci for selection
emerge: the ‘input’ language (biologically, nucleic acid), the ‘output’ language
(biologically, proteins) and the one discussed here, namely the set of rules by which
one is mapped to the other (biologically, the set of 64 codon assignments). Thus,
in addition to researching an adaptive pattern of codon assignments, it is legitimate
to ask whether any properties of the nucleic acid and/or protein languages are
themselves adaptations. Eschenmoser (1999), has made a plausible case that the
fundamental chemical nature of nucleic acid (specifically the ribose backbone)
represents an adaptive tradeoff in base-pairing strength, and Weber et al. (1981)
have made an analogous claim for the amino acids (specifically that alpha amino
acids were selected for their conformational rigidity). Further, the constituent ele-
ments of each alphabet might be adaptive choices: certainly we know that other
base pairs can be incorporated into DNA and RNA (Piccirilli et al., 1990) and
that other amino acids (Wong et al., 1979) were probably available to the primor-
dial biosphere, though arguments for why specific chemical building blocks were
accepted while others were rejected remain incomplete. Finally, the sizes of the
respective chemical alphabets have been studied for adaptive properties: although
numerous analyses have claimed that the original genetic code used only a subset of
the 4 bases we see today, the claims are so varied (e.g. only A,U (Jimenez-Sanchez,
1995), no-A,U (Lehman et al., 1988; Hartman, 1995), all-purine (Hartman, 1995)
or GCU-only (Trifonov et al., 1997)) as to prevent any clear message. Probably
the most rigorously developed theoretical model asserts that a genetic alphabet of
4 bases represents a left-over optimum from an RNA world (Szathmáry, 1991b,
1992), where an increase in alphabet size would benefit catalytic potential but cost
in terms of replication fidelity. Analogous models, asserting that 20 amino acids
represent an adaptive trade-off between the increased catalytic potential afforded
by expanding the encoded amino acid alphabet and the genome disruption caused
by this change (Wong, 1976; Szathmary, 1991b), are suggestive but have been less
thoroughly developed. Indeed the size and constituents of the biological alphabets
have received far less attention than the topic of codon assignments and could add
significantly to our understanding of the standard genetic code.

Even within the topic of the codon assignments of the standard code, one key
aspect remains relatively ill explored. Recent observations from both biology (e.g.
Maeshiro, et al.) and computer science (e.g. Kargupta, 2001) have started to re-
examine the powerful influence of genetic code redundancy on the general dynamic
of evolution. Though mainstream biology tends to interpret Crick’s (1966) wobble
hypothesis as a description of biochemical constraint, Ardell and Sella’s (Ardell
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et al., 2001; Sella et al., 2002) simulations find that patterns of codon degener-
acy can spontaneously emerge from selection for an error minimizing code. This
supports Szathmáry’s (1991a) suggestion of code redundancy as an evolved state,
though it stands contrary to the findings of a previous analysis that used a powerful
computer search for ‘ideal’ codes, but once again ignored biases in nucleotide
mutation/mistranslation (Judson et al., 1999). The unambiguous resolution of this
issue would have significant impact on the sub-branch of codon assignment re-
search that has included flexible coding within analyses that conclude an adaptive
genetic code (e.g. Cullman and Labouygues, 1983, 1987; Figureau and Pouzet,
1984; Figureau, 1987, 1989; Luo, 1988, 1989; Luo et al., 2002)
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