
Information Retrieval, 6, 5–19, 2003
c© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

Compressing Inverted Files

ANDREW TROTMAN∗
Department of Computer Science, University of Otago, PO Box 56, Dunedin, New Zealand

Received April 17, 2002; Revised October 2, 2002; Accepted October 16, 2002

Abstract. Research into inverted file compression has focused on compression ratio—how small the indexes
can be. Compression ratio is important for fast interactive searching. It is taken as read, the smaller the index, the
faster the search.

The premise “smaller is better” may not be true. To truly build faster indexes it is often necessary to forfeit
compression. For inverted lists consisting of only 128 occurrences compression may only add overhead. Perhaps
the inverted list could be stored in 128 bytes in place of 128 words, but it must still be stored on disk. If the minimum
disk sector read size is 512 bytes and the word size is 4 bytes, then both the compressed and raw postings would
require one disk seek and one disk sector read. A less efficient compression technique may increase the file size,
but decrease load/decompress time, thereby increasing throughput.

Examined here are five compression techniques, Golomb, Elias gamma, Elias delta, Variable Byte Encoding
and Binary Interpolative Coding. The effect on file size, file seek time, and file read time are all measured as is
decompression time. A quantitative measure of throughput is developed and the performance of each method is
determined.

Keywords: index compression, inverted files, document indexing, text searching

Introduction

An inverted file index of a document collection consists of two parts, the dictionary file
and the postings file. For each unique term in the corpus, the dictionary stores that term, a
position into, and the length of the inverted list in the postings file. Occasionally other data
is included. The inverted list for any given term is a vector (document-number, occurrences)
for each document in which the term is present.

The inverted list for a given term is often represented as {〈d1, f1〉, 〈d2, f2〉, . . . , 〈dn, fn〉}
where a pair 〈d, f 〉 means the given term is present f times in document d. The inverted
list is considered sorted sequentially by document ordinal number—something that occurs
as a consequence of indexing sequentially and assigning each document a unique number.

It is common to store these lists as two, and that is the representation used herein. One
list, the inverted document list, is the monotonic increasing sequence of document numbers.
The other list, the inverted frequency list, is the list of frequencies for each document.

An additional list, the inverted word occurrence list, is required for adjacency searching.
The vector {w1, w2, . . . , wn} is stored where w is the ordinal number of the given instance
of the given term within the document collection.

∗Work conducted while at National Center for Biotechnology Information, Bethesda, MD, USA.

6 TROTMAN

When the dictionary is stored as a B-tree with a high branching factor, it takes one disk
seek and one disk read to retrieve the position/length pair for any given term (Witten et al.
1994). To retrieve an inverted list takes one more disk seek and one more disk read (Witten
et al. 1994).

Zobel and Moffat (1995) and Williams and Zobel (1999) suggest that compression of
inverted files will result in an increase in query throughput. The time to load and decompress
a compressed inverted list is shorter than the time to load a never compressed inverted list,
and therefore throughput is increased.

Many techniques have been proposed for compressing inverted lists (Williams and Zobel
1999, Moffat and Stuiver 2000, Antoshenkov 1994, Bookstein et al. 2000); the primary
focus being on compression ratio. Compression ratio is measured as the mean number of
bits required for storing the d pointers in the inverted lists of an entire document collection.
The time to load and decompress are often forgotten or not reported.

Compression techniques tested

The inverted document and inverted word occurrence lists are strictly increasing monotonic
sequences. Compressing these sequences is not as efficient as compressing the sequence of
successive differences (Williams and Zobel 1999). For the sequence {4, 7, 9, 11, 15}, the
differences are {4, 3, 2, 2, 4}. Frequent terms give rise to longer lists, which necessitates
smaller differences, and therefore more efficient compression. For a term that occurs in every
document the sequence would be {1, 1, 1, . . .} which can be compressed very efficiently.
These difference lists can then be compressed using a suitable compression scheme.

Variable Byte Coding. Modern computers are designed for fast manipulation of bytes
and sequences of bytes. A byte aligned encoding of integers can take advantage of opti-
mized hardware operations when decompressing. Taking advantage of the hardware does,
however, necessitate a trade off. It is necessary to forfeit size to take advantage of speed.

An integer x is represented as a sequence of 7-bit bytes; each being encoded in 8-bit
bytes with the high bit a 1 for the last byte of the sequence and a 0 for all other bytes. The
integer 135, for example, is converted into the sequence 00000001, 10000111.

Both compression and decompression using Variable Byte Coding are very fast as the
smallest unit of manipulation is the whole byte. The compression ratio for an array of 32-bit
integers is at best 25%, and at worst 125%. As integers become large the coded space also
becomes large.

Elias gamma coding. Inverted lists can become very long, and information retrieval is
disk bound (Williams and Zobel 1999, Zobel and Moffat 1995). Retrieving a long inverted
list from disk can require more time than further manipulation of the very same list. To
increase throughput from disk, a more efficient encoding of integers is required.

In the gamma code (Elias 1975) an integer x is represented in two parts, a header with
�log2 x� zeros, followed by the tail, a binary representation of x . This way the integer 9 is
represented by the sequence 000, 1001 since log2 x = 3 the header is 000, and the tail is
1001.

COMPRESSING INVERTED FILES 7

Gamma coding is efficient for small integers where the length of the header remains
small. When integers become large, the storage space also becomes large.

Elias delta coding. In the delta code (Elias 1975) an integer x is represented in two parts,
1 + �log2 x� using the gamma code, followed by the binary representation of x with the
high bit turned off. This way the integer 9 is represented by the sequence 00, 100, 001.

The delta code requires more bits to store smaller integers, but large integers are more
efficiently compressed.

Choice of gamma coding over delta coding would be made when, in a sequence of in-
tegers, the majority of the integers are known to be small. For information retrieval, as
the number of occurrences of a term increases, so to does the density in the inverted lists.
Examining just the inverted document list, as the density increases, the successive differ-
ences tend to the sequence {1, 1, 1, . . .}, which has a more efficient coding using gamma
codes.

Golomb coding. In the Golomb code (1966) an integer x is represented as two parts, a
quotient and a remainder. The quotient is calculated as q = �(x − 1)/k�, and the remainder
is calculated as r = x − (q ∗ k) − 1 where k is the base to which the Golomb code is
calculated.

If r < p it can be stored in �log2 k� bits, else it requires �log2 k bits, where p is the
pivot point and is given by p = 2�log2 k�+1 − k.

When r < p the Golomb code is constructed with q zeros, a one, and r in binary.
Otherwise it is represented with q zeros, a one, and r + p in binary. This way the integer 9
encoded with k = 3 is represented as 00,1,11.

Choice of k is vital to the scheme. With a bad choice, encoded integers can become
very large and thus take a long time to decompress. Witten et al. (1994) suggest assuming
integers in an inverted list follow a Bernoulli model and using k ≈ 0.69 × mean(a) for an
array of integers, a.

The value of k chosen for these experiments was given using Witten’s approximation.
Each inverted list was compressed with its own k. The cost of storing k is not calculated
and is not included in these results.

Williams and Zobel (1999) describe implementation optimizations for Golomb coding
and suggest that in general Golomb encoding of integers is both faster to decode and more
space-efficient than either Elias gamma or Elias delta codes, a finding confirmed by this
investigation.

Binary Interpolative Coding. Binary Interpolative Coding (Moffat and Stuiver 1996,
2000) encodes a monotonic increasing sequence of integers using knowledge of its
neighbors.

If, in a sequence of integers X1, for a given integer xi , the preceding integer xi−1 and fol-
lowing integer xi+1 are known, then through subtraction it is possible to know the maximum
number of bits necessary to store xi . Because xi must be in the range (xi−1 + 1, xi+1 − 1),
the maximum number of bits required is log2(xi+1 − xi−1 − 2). To decode requires prior
knowledge of xi−1 and xi+1 so a list X2 is drawn from the original list X1 such that every
second integer from list X1 is in X2 and the coding is then applied recursively.

8 TROTMAN

The implementation tested here uses a centered minimal binary code (Howard and Vitter
1993). When compressing a sequence 1..n, �log2 n bits are required, however 2�log2 n − n
encodings are wasted. These wasted encodings can be shortened by one bit and used (so
long as no short encoding is a prefix of a longer encoding). These minimal binary codes are
then centered on the encoding range. Numbers at the extremes of the range requiring one
bit more for storeage than those in the center.

As a further refinement, inverted centered minimal binary codes can be used. As the size
of a range tends to small, the density is increasing. Moffat and Stuvier (2000) suggest taking
advantage of this by allocating the minimal binary codes to the extremes in the range, rather
then to the center. This refinement has not been examined.

As suggested by Moffat and Stuvier (2000), the tested implementation is recursive
and minimizes the number of non 2k − 1 recursive calls by dividing the original list
unevenly.

Compression of inverted document and inverted word occurrence lists is performed di-
rectly on the inverted lists, and without taking the differences. A monotonic increasing
sequence is generated from the frequencies by calculating the cumulative sum at each
document.

Compression techniques not tested

Chunking. Moffat and Zobel (1996) and later Vo and Moffat (1998) suggest chunking the
compressed data into a series of blocks. For each block, a value/offset pair is stored. The
value is the first value in the chunk, the offset is a pointer to that chunk of the compressed
sequence. The value/offset pairs are stored at the beginning of the compressed sequence.
If only part of the original sequence is needed, the appropriate chunk can be located and
decompressed without decompressing the entire sequence.

Novel techniques. A number of novel index compression techniques have been proposed.
In some instances decompression is not required, in others the compression is lossy, in
others the technique does not scale.

Statistical compression techniques appear to produce good compression ratios, however
there is still much undone research in the area. Bookstein et al. (1994) suggested a Markov
approach to which they subsequently added by a Bayesian approach (Bookstein et al.
2000).

Numerous lossy techniques have been suggested. One commonly used technique is to
drop frequently occurring words from the indexes (giving 100% compression for said
terms). Koudas (2000) suggests merging into a single index terms that occur infrequently
in the corpus, and also infrequently in queries. These are then compressed using a lossy
compression technique to attain maximum compression.

The Byte-aligned Bitmap Codes (BBC) (Antoshenkov 1994) have received much in-
terest in the relational database community (Stockinger 2001, Johnson 1999, Chan and
Ioannidis 1999). A one-dimensional bitmap is divided on byte boundaries and encoded
in chunks. Each chunk consists of two parts, a run and a tail. A run is series of bytes
whose value is either all bit-zeros or all bit-ones. The tail is a series of bytes that breaks

COMPRESSING INVERTED FILES 9

this rule. Chunks are written out with a header describing the chunk, then the run, and
then the tail. Boolean operations can be performed directly on BBC codes without
decompression and for operations on sparse bitmaps perform very well (Johnson
1999).

Using Hierarchical Bit-Vector Compression (Choueka et al. 1986), a bitmap is divided
into a series of equal sized partitions, and a partition index created. The index is itself a
bitmap, of length “number of partitions”, where a one represents “set bits in partition”
and a zero represents no set bits in partition. The compressed bitmap is then constructed
by dropping the “all zero” partitions and appending the remaining partitions to the index.
The process can then be re-applied recursively to form a tree. Again, decompression is not
required for index manipulation.

Compression techniques using the inverted file dictionary as the compression dictionary
have been proposed (Varadarajan and Chiuen 1997, Navarro et al. 2000). These techniques
typically divide the text into a number of fixed-size blocks and index the blocks. If the
block size is larger then the document size, there are fewer blocks to index than documents
and therefore the index will be smaller. Once a hit has been identified the required block is
retrieved and a linear search is performed to find the given document. Decompressing the
block is unnecessary because the inverted file dictionary and the compression dictionary
are shared allowing the compressed symbols to be scanned directly. If the block size is
exactly document size, this technique degenerates to a document based inverted file search
followed by a document linear search. If the block size is sub-document size the complex-
ity of the block-based index search is greater than the complexity of a document-based
search.

A Binary Decision Diagram Encoding of an inverted index (Lai and Chen 2001) represents
the list as a binary tree of depth “bits in integer”. Each integer is represented as a walk through
the tree much as terms in a dictionary can be represented as a walk through a trie. Boolean
operations can be performed directly on the tree. To determine, for example, if a given
integer lies in the list, the tree is simply walked top-down.

Methods

Testing compression

Five compression techniques were examined, Variable Byte Compression, Elias gamma
(1975), Elias delta (1975), Golomb (1966), and Binary Interpolative Coding (Moffat and
Stuiver 1996), for suitability in compressing the TREC Wall Street Journal collection
(Harman 1992–96). WSJ was chosen because of its ubiquity.

An inverted file index of WSJ was created and used to test each algorithm. Three inverted
lists were created for each term, an inverted document list, and inverted frequency list,
and an inverted word occurrence list. Each inverted list was read in turn and compressed
to determine the number of bits required for storage. The compressed sequence was then
decompressed and the decompression time was recorded. For each technique, against each
inverted list, the triple is written to disk (integers in the sequence, compressed size in bits,
decompression time).

10 TROTMAN

The mean compression ratio was measured in bits per integer. Implementation used 32 bit
integers, as that is the word size of the Pentium CPU.

Mean time to decompress was measured in clock cycles per integer using the Pentium
RDTSC instruction (Intel Corporation 1997) (this instruction measures elapsed clock
cycles). Experiments were carried out on a Windows 2000 Dell OptiPlex Gx 200, with
a Pentium III running at 927 MHz.

Although each algorithm used here was implemented independently, Williams and Zobel
have made the source code for Elias gamma, Elias delta, and Golomb encoding available
for download (Williams 2002) on their web site.

Testing disk

To load an inverted list requires three operations, a disk seek, a disk read and
decompression—therefore disk performance was also measured. Opening the computer
revealed an IBM Deskstar DTLA-307015 ATA/IDE drive—this is a 15 GB drive (IBM
Corporation 2000).

The mean disk seek time and mean disk read time were independently measured using
the RDTSC instruction under Windows 2000. Disk throughput is measured in clock cycles
to maintain a single unit of measure for all timings.

To determine how seek distance effects seek time a large file was created then defrag-
mented. Seeks over random distances were timed then graphed. To determine the disk read
time, reads of random numbers of sectors were performed from random locations in the
file.

Once seek, read, and decompress times are known, it becomes possible to model each
compression method’s throughput. Graphing the performance against inverted list length
resulted in the heuristics needed to choose a suitable algorithm.

Results

Compression ratio

Figure 1 displays the number of bits needed to store the compressed inverted list against the
length of the inverted list (measured in integers). As reported elsewhere (Moffat and Stuiver
2000), compression using Binary Interpolative Coding results in the highest compression
ratio for the inverted document list and inverted frequency list. For the inverted word
occurrence list, Golomb slightly outperforms Binary Interpolative Coding.

Binary Interpolative Coding performs very well when the data is clustered. If a term lies
in a long sequence of adjacent documents, the compression becomes trivial and fewer bytes
are required. As the frequency of the term increases, the number of documents in which it
lies increases and longer sequences of adjacency are expected—so the compression will be
more effective. When a term lies in all documents, the resulting compression can be stored
in zero bytes! In figure 1(a) the graph for Binary Interpolative Coding demonstrates this
clustering effect. As the frequency tends from 0.5 to 1.0, the compressed strings tend to
zero length.

COMPRESSING INVERTED FILES 11

Compression of Records

0
200
400
600
800

1000
1200
1400
1600

0 50 100 150 200

Th
ou

sa
nd

s
of

 B
its

Thousands of Occurrences

Byte

Delta

Gamma

Golomb

Interpolative

(a)

Compression of Occurrences

0
200
400
600
800

1000
1200
1400
1600

0 50 100 150 200

Th
ou

sa
nd

s
of

 B
its

Thousands of Records

Byte

Delta

Gamma

Golomb

Interpolative

(b)

Compression of Words

0
5000

10000
15000
20000
25000
30000
35000
40000

0 1000 2000 3000 4000 5000

Th
ou

sa
nd

s
of

 B
its

Thousands of Occurrences

Delta

Byte

Gamma

Golomb

Interpolative

(c)

Figure 1. (a) Compression of inverted document lists, (b) Compression of inverted frequency lists, and (c)
Compression of inverted word occurrence lists.

12 TROTMAN

Decompression speeds

Figure 2 graphs decompression time in clock-cycles against the length of the uncompressed
string (measured in integers). In all cases Variable Byte Coding outperforms the others, this

Decompression of Records

0
2000
4000
6000
8000

10000
12000
14000
16000

0 50 100 150 200

Th
ou

sa
nd

s
of

 C
lo

ck
 C

yc
le

s

Thousands of Occurrences

Interpolative

Delta

Gamma

Golomb

Byte

(a)

Decompression of Occurrences

0
5000

10000
15000

20000
25000
30000

0 50 100 150 200

Th
ou

sa
nd

s
of

 C
lo

ck
 C

yc
le

s

Thousands of Records

Interpolative

Delta

Gamma

Golomb

Byte

(b)

Decompression of Words

0
100000
200000
300000
400000
500000
600000
700000

0 1000 2000 3000 4000 5000

Th
ou

sa
nd

s
of

 C
lo

ck
 C

yc
le

s

Thousands of Occurrences

Interpolative

Delta

Gamma

Golomb

Byte

(c)

Figure 2. (a) Decompression of inverted document lists, (b) Decompression of inverted frequency lists, and (c)
Decompression of inverted word occurrence lists.

COMPRESSING INVERTED FILES 13

is almost certainly due to the algorithm being byte oriented whereas the other algorithms
are bit oriented. Decoding bytes into bits for Elias or Golomb decoding takes considerable
time. From figure 1 and figure 2, it is clear Golomb outperforms Elias gamma and Elias
delta in both compression size and decompression speed as previously reported by Williams
and Zobel (1999).

Even though Binary Interpolative Coding is most efficient at compression, it is most
inefficient at decompression. This is almost certainly due to the recursive nature of the
algorithm—the other algorithms are implemented iteratively.

The disk

To measure the throughput of each compression method, it is necessary to measure the
throughput of the disk. Both read time and seek time were measured.

How slow is the disk? There are two operations necessary to transfer data from the disk
to memory. The first involves moving the disk head to the correct location (the seek). The
second involves reading a sequence of sectors from disk and transferring to memory (the
read).

Hard Drive manufacturers often provide exact details of the operating specifications
of their equipment (IBM Corporation 2000), however, these details often do not take into
account the environment in which the equipment is running. The seek and read times reported
here are for an IBM Deskstar DTLA-307015 ATA/IDE drive running under Windows 2000.

How slow is a seek? To determine how disk seek time behaves, a 1.4 GB file was created,
defragmented, and opened using non-buffered I/O.1 1024 sample seek points were chosen
within the file. Each sample point was chosen to be a random location within the file and
to lie on an exact sector boundary.

The time taken to seek from the current location to the sample point, and to read one sector,
was taken using the Pentium RDTSC instruction. The results were collated in memory and
written to disk at conclusion of the experiment.

Figure 3 graphs seek distance against time. Analysis of the samples suggests seek time
increases with distance, and is highly variable. This is partly expected. The seek time should
increase with distance as the head must seek further across the disk.

Seek time should be variable. Adjacent sectors in the file might not be adjacent on the
disk. A seek forward by one sector could result in no disk head movement (if both sectors
lie in the same track) or it could result in a head move (if they are not). Once the head
arrives at the required location, some portion of a whole disk revolution is necessary before
the read can occur. It is unlikely the head will be positioned above the correct sector at the
exact moment it arrives at the desired track.

The data collected has a mean seek time of 7,954,054 clock cycles or 8.6 ms. This is inline
with the manufacturer’s specifications of 8.5 ms. The measured seek times are expected to
take longer than the manufacturer’s due to operating system overheads.

Given the mean seek time within the sample file, it is possible to calculate the mean seek
time within a file of a different size. The general equation of the line that fits the samples in

14 TROTMAN

Disk Seek Times

0

5,000

10,000

15,000

20,000

0 500 1,000 1,500 2,000 2,500 3,000

T
h

o
u

sa
n

d
s

o
f

C
lo

ck
 C

yc
le

s

Thousands of Sectors

Figure 3. Time to seek and read as distance increases.

figure 3 is

T1 = 1.02B + C (1)

where T1 is time in clock cycles and B is the number of sectors to seek. C is the constant
7,039,007, the inherent cost of seeking measured in clock cycles. The ratio of the size
difference between the two files is

R = S2

S1
(2)

where S1 is the size of the sampled file, and S2 is the size of the new file.
The calculated new mean seek time is

T2 = (T1 − C)R + C (3)

where T2 is the calculated mean for the new file, and T1 is the observed mean of the sampled
file.

How slow is a read? To determine how disk read time behaves, a 1.4 GB file was created,
defragmented, and opened using non-buffered I/O. 1024 samples were chosen to read a
random number of sectors (up to 32 sectors) from a random sector-aligned location within
the file. Times were measured in clock cycles using the Pentium RDTSC instruction. Results
were collated in memory and written to disk once the experiment had concluded.

The read time in clock cycles per sector is graphed against the number of sectors read in
figure 4. The results are as expected. When a small number of sectors is read the per-sector
impact of seeking is high. As the length of the read increases the seek impact becomes
increasingly insignificant. The graph tends to a mean read time of 18,327 cycles per sector,
a data transfer rate of 24.69 MB/s. This is inline with the manufacturer’s specifications that
report a sustained data transfer rate of 37 MB/s. The observed data transfer rate is believed
to be low due to operating system overheads.

COMPRESSING INVERTED FILES 15

Disk Data Transfer Rate

0
100
200
300
400
500
600
700

0 5 10 15 20 25 30 35

T
h

o
u

sa
n

d
s

o
f

C
lo

ck
 C

yc
le

s

Thousands of Sectors

Figure 4. Time to read one sector from disk as read size increases.

For n integers the time t required to read a compressed inverted list from disk (post seek)
is

t =
⌈

En

512 × 8

⌉
× 18327 (4)

where E is the effectiveness of the compression technique measured in bits per integer. As
the number of integers being read increases the effect of the ceiling diminishes so

t ≈ EnA (5)

where

A = 18327

512 × 8
≈ 4.47 (6)

The disk. Equation (3) describes the cost of randomly seeking into a file of any size.
Equation (4) describes the cost of reading integers from a file. The disk’s observed charac-
teristics are inline with the manufacturer’s specification, but in both cases are slower. The
mean disk seek takes about 400 times the mean sector read time, suggesting the bottleneck
in searching is not the read, but the seek.

When the same tests were carried out on small defragmented files the results were inline
with those reported here. Seek times were in the range 2 million–10 million clock cycles
and read times in the order of 18,500 clock cycles per block.

Putting it all together

Results from the disk experiments are combined with results from the compression exper-
iments to give a true picture of how each algorithm performs.

Assuming a 1.4 GB file of inverted lists compressed with the most efficient scheme (from
Table 1), the total cost of the load and decompressing is given by

U ≈ T + EnA + dn (7)

16 TROTMAN

Table 1. Compression effectiveness, decompression speed, and relative performance.

Byte Delta Gamma Golomb Interpolative Unit

Mean

Bits

Records 9.35 8.67 8.48 6.15 5.94 bpo

Occurrence 8.00 4.52 3.43 2.69 1.57 bpr

Words 13.99 15.15 17.98 12.31 12.11 bpo

Cycles

Records 11.47 112.55 101.09 99.09 149.62 cpo

Occurrences 9.24 64.52 44.91 42.52 105.71 cpr

Words 21.85 170.48 181.99 188.62 209.78 cpo

Relative mean

Bits

Records 1.57 1.46 1.43 1.04 1.00

Occurrence 5.08 2.87 2.18 1.71 1.00

Words 1.16 1.25 1.48 1.02 1.00

Cycles

Records 0.08 0.75 0.68 0.66 1.00

Occurrences 0.09 0.61 0.42 0.40 1.00

Words 0.10 0.81 0.87 0.90 1.00

bpo—bits per occurrence, bpr—bits per record, cpo—cycles per occurrence, cpr—cycles per record.

where U is the time taken, T is the cost of the seek, EnA is the cost of the read, and dn is
in-memory cost of decompression and n is the number of compressed integers being read.

As n tends to very large, the cost of the seek becomes insignificant and performance P
of the decompression scheme is governed by the read and decompression time

P ≈ EA + d (8)

As n tends to zero, the performance is governed exclusively by the seek

P ≈ T (9)

from (3)

P ≈ T = (M − C)R + C (10)

where M is the measured mean seek time for the disk.
From figure 5, Binary Interpolative Coding performs best when the number of integers

being coded is very small, however, very quickly Golomb coding outperforms the others,
until finally when the number of occurrences becomes large Variable Byte Coding is most
efficient.

COMPRESSING INVERTED FILES 17

Performance Processing Records

8,000

8,500

9,000

9,500

10,000

10,500

11,000

0 5 10 15 20

Th
ou

sa
nd

s
of

 C
lo

ck
 C

yc
le

s

Thousands of Occurrences

Interpolative

Delta

Gamma

Golomb

Byte

(a)

Performance Processing Occurrences

8,000
13,000
18,000
23,000
28,000
33,000
38,000
43,000
48,000

0 100 200 300 400

Th
ou

sa
nd

s
of

 C
lo

ck
 C

yc
le

s

Thousands of Records

Interpolative

Delta

Gamma

Golomb

Byte

(b)

Performance Processing Words

8,000

8,500

9,000

9,500

10,000

10,500

0 2 4 6 8

Th
ou

sa
nd

s
of

 C
lo

ck
 C

yc
le

s

Thousands of Occurrences

Gamma

Delta

Interpolative

Golomb

Byte

(c)

Figure 5. (a) Projected performance loading and decompressing inverted document lists, (b) Projected perfor-
mance loading and decompressing inverted frequency lists, and (c) Projected performance loading and decom-
pressing inverted word occurrence lists.

18 TROTMAN

These calculations are based on applying the same compression technique to every in-
verted list in an inverted index of a document corpus.

Conclusions

Mean compression ratio over a set of inverted indexes has been the exclusive measure of
goodness of fit. Little or no research has been done on how the method performs as the size
of the inverted lists increase. Since processing long inverted lists is a bottleneck in inverted
file information retrieval systems, performance as inverted lists grow is a better measure.

Measured here is the performance under one set of conditions, the IBM Deskstar DTLA-
307015 15 GB drive under Windows 2000 and using the TREC Wall St. Journal collection.

When the inverted lists are small, the throughput is determined by disk seek time, which
is related to the length of the disk file. Minimizing the file size minimizes the length of
the disk seek, so choice of compression based on minimizing file size is best (for example
Golomb). As the length of the lists grows, however, the disk seek becomes less significant
and throughout is related to compression ratio and decompression speed (so Variable Byte
Encoding is better).

If disk space is a premium, Golomb compression is recommended. As reported by
Williams and Zobel, use of Golomb results in both smaller files and faster decompres-
sion than Elias gamma or Elias delta (Williams and Zobel 1999).

Use of Golomb/gamma (Moffat and Zobel 1996) coding where the document numbers are
encoded using Golomb and the frequencies using Elias gamma appears to be less efficient
then using Golomb for both positions and frequencies.

Bounds can now be placed on the design of a “better” compression scheme. By know-
ing the mean compression ratio and the rate of decompression it is possible to determine
quantitatively how the scheme will perform relative to existing schemes at various lengths
of inverted list. Optimizations of the existing algorithms (perhaps an iterative Binary In-
terpolative Coding) can be quantitatively evaluated against their original algorithms for a
measure of effectiveness of each optimization.

For optimal performance a mix of algorithms is recommended. Keep file size small by
forfeiting clock cycles when an inverted list is small. Forfeit disk space when a list is long.
Zipf’s law suggests most terms occur infrequently so the file size overhead of using Variable
Byte Encoding for long inverted lists is likely to be low.

Note

1. Windows 2000 has a flag FILE FLAG NO BUFFERING to the file open method CreateFile() that “Instructs
the system to open the file with no intermediate buffering or caching” (Microsoft Corporation 2000).

References

Antoshenkov G (1994) Byte aligned data compression. US Patent Number 5363098.
Bookstein A, Klein ST and Raita T (1994) Markov models for clusters in concordance compression. In: Proceedings

of the 1994 IEEE Data Compression Conference DCC-94, pp. 116–125.

COMPRESSING INVERTED FILES 19

Bookstein A, Klein ST and Raita T (2000) Simple bayesian model for Bitmap compression. Information Retrieval,
1(4):315–328.

Chan CY and Ioannidis YE (1999) An efficient Bitmap encoding scheme for selection queries. In: Proceedings of
ACM SIGMOD International Conference on Management of Data, pp. 215–226.

Choueka Y, Fraenkel AS and Klein ST (1988) Compression of concordances in full-text retrieval systems. In:
Proceedings of the 11th ACM-SIGIR Conference on Information Retrieval, pp. 597–612.

Choueka Y, Fraenkel AS, Klein ST and Segal E (1986) Improved hierarchical bit-vector compression in document
retrieval systems. In: Proceedings of the 9th ACM-SIGR Conference on Information Retrieval, pp. 88–97.

Elias P (1975) Universal codeword sets and the representation of the integers. IEEE Transactions on Information
Theory, 21:194–203.

Golomb SW (1966) Run-length encodings. IEEE Transactions on Information Theory, 12(3):399–401.
Harman DKE (1992–96) Proceedings of the TREC Text Retrieval Conference. National Institute of Standards

Special Publication.
Howard P and Vitter J (1993) Fast and efficient lossless image compression. In: Proceedings of the 1993 IEEE

Data Compression Conference DCC-93, pp. 351–360.
IBM Corporation (2000) IBM Deskstar 75GXP and Deskstar 40GV hard disk drives. IBM TECHFAX #7011.

Available at www.storage.ibm.com/hdd/desk/deskstar75gxp40gv.pdf (Viewed April 2002).
Intel Corporation (1997) Using the RDTSC instruction for performance monitoring. Available at

cedar.intel.com/software/idap/media/pdf/rdtscpm1.pdf (Viewed April 2002).
Johnson T (1999) Performance measurements of compressed Bitmap indices. In: Proceedings of the 25th VLDB

Conference, pp. 278–289.
Klein ST, Bookstein A and Deerwester S (1989) Storing text retrieval systems on CD-ROM: Compression and

encryption considerations. ACM Transactions on Information Systems, 7:230–245.
Koudas N (2000) Space efficient Bitmap indexing. In: Proceedings of CIKM 2000, pp. 194–201.
Lai CH and Chen TF (2001) Compressing inverted files in scalable information systems by binary decision diagram

encoding. Presented at SC2001, available at http://www.sc2001.org/papers/pap.pap338.pdf (visited April 2002).
Microsoft Corporation (2000) CreateFile. Available at msdn.microsoft.com/library/en-us/fileio/filesio 7wmd.asp

(Viewed April 2002).
Moffat A and Stuiver L (1996) Exploiting clustering in inverted file compression. In: Proceedings of the 1996

IEEE Data Compression Conference DCC-96, pp. 82–91.
Moffat A and Stuiver L (2000) Binary interpolative coding for effective index compression. Information Retrieval,

3(1):25–47.
Moffat A and Zobel J (1992) Parameterized compression of sparse Bitmaps. In: Proceedings of the 15th ACM-

SIGIR Conference on Information Retrieval, pp. 274–285.
Moffat A and Zobel J (1996) Self-indexing inverted files for fast text retrieval. ACM Transactions on Information

Systems, 14(4):349–379.
Navarro G, Moura E, Neubert M, Ziviani N and Baeza-Yates R (2000) Adding compression to block addressing

inverted indexes. Information Retrieval, 3(1):49–77.
Stockinger K (2001) Design and implementation of Bitmap indices for scientific data. In: Proceedings of Interna-

tional Data Engineering and Applications Symposium IDEAS-01, pp. 47–57.
Varadarajan S and Chiuen T (1997) SASE: Implementation of a compressed text search engine. In: Proceedings

of the USENIX Symposium on Internet Technologies and Systems.
Vo AN and Moffat A (1998) Compressed inverted files with reduced decoding overheads. In: Proceedings of the

21st ACM-SIGIR Conference on Information Retrieval, pp. 290–297.
Williams HE (2002) goanna.cs.rmit.edu.au/∼hugh/software/integer.coding.tar.gz (viewed April 2002).
Williams HE and Zobel J (1999) Compressing integers for fast file access. The Computer Journal, 42(3):193–201.
Witten IH, Moffat A and Bell TC (1994) Managing gigabytes. Van Nostrand Reinhold 1994.
Zobel J and Moffat A (1995) Adding compression to a full-text retrieval system. Software Practice and Experience,

25(8):891–903.

